Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-8x+8=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 8}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -8 ni b va 8 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 8}}{2\times 4}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 8}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-128}}{2\times 4}
-16 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-64}}{2\times 4}
64 ni -128 ga qo'shish.
x=\frac{-\left(-8\right)±8i}{2\times 4}
-64 ning kvadrat ildizini chiqarish.
x=\frac{8±8i}{2\times 4}
-8 ning teskarisi 8 ga teng.
x=\frac{8±8i}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{8+8i}{8}
x=\frac{8±8i}{8} tenglamasini yeching, bunda ± musbat. 8 ni 8i ga qo'shish.
x=1+i
8+8i ni 8 ga bo'lish.
x=\frac{8-8i}{8}
x=\frac{8±8i}{8} tenglamasini yeching, bunda ± manfiy. 8 dan 8i ni ayirish.
x=1-i
8-8i ni 8 ga bo'lish.
x=1+i x=1-i
Tenglama yechildi.
4x^{2}-8x+8=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-8x+8-8=-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
4x^{2}-8x=-8
O‘zidan 8 ayirilsa 0 qoladi.
\frac{4x^{2}-8x}{4}=-\frac{8}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{8}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{8}{4}
-8 ni 4 ga bo'lish.
x^{2}-2x=-2
-8 ni 4 ga bo'lish.
x^{2}-2x+1=-2+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=-1
-2 ni 1 ga qo'shish.
\left(x-1\right)^{2}=-1
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=i x-1=-i
Qisqartirish.
x=1+i x=1-i
1 ni tenglamaning ikkala tarafiga qo'shish.