Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-8x+12-9=0
Ikkala tarafdan 9 ni ayirish.
4x^{2}-8x+3=0
3 olish uchun 12 dan 9 ni ayirish.
a+b=-8 ab=4\times 3=12
Tenglamani yechish uchun guruhlash orqali chap qoʻl tomonni faktorlang. Avvalo, chap qoʻl tomon 4x^{2}+ax+bx+3 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
-1,-12 -2,-6 -3,-4
ab musbat boʻlganda, a va b da bir xil belgi bor. a+b manfiy boʻlganda, a va b ikkisi ham manfiy. 12-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
-1-12=-13 -2-6=-8 -3-4=-7
Har bir juftlik yigʻindisini hisoblang.
a=-6 b=-2
Yechim – -8 yigʻindisini beruvchi juftlik.
\left(4x^{2}-6x\right)+\left(-2x+3\right)
4x^{2}-8x+3 ni \left(4x^{2}-6x\right)+\left(-2x+3\right) sifatida qaytadan yozish.
2x\left(2x-3\right)-\left(2x-3\right)
Birinchi guruhda 2x ni va ikkinchi guruhda -1 ni faktordan chiqaring.
\left(2x-3\right)\left(2x-1\right)
Distributiv funktsiyasidan foydalangan holda 2x-3 umumiy terminini chiqaring.
x=\frac{3}{2} x=\frac{1}{2}
Tenglamani yechish uchun 2x-3=0 va 2x-1=0 ni yeching.
4x^{2}-8x+12=9
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
4x^{2}-8x+12-9=9-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
4x^{2}-8x+12-9=0
O‘zidan 9 ayirilsa 0 qoladi.
4x^{2}-8x+3=0
12 dan 9 ni ayirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4\times 3}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -8 ni b va 3 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4\times 3}}{2\times 4}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-16\times 3}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{64-48}}{2\times 4}
-16 ni 3 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{16}}{2\times 4}
64 ni -48 ga qo'shish.
x=\frac{-\left(-8\right)±4}{2\times 4}
16 ning kvadrat ildizini chiqarish.
x=\frac{8±4}{2\times 4}
-8 ning teskarisi 8 ga teng.
x=\frac{8±4}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{12}{8}
x=\frac{8±4}{8} tenglamasini yeching, bunda ± musbat. 8 ni 4 ga qo'shish.
x=\frac{3}{2}
\frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{4}{8}
x=\frac{8±4}{8} tenglamasini yeching, bunda ± manfiy. 8 dan 4 ni ayirish.
x=\frac{1}{2}
\frac{4}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{2} x=\frac{1}{2}
Tenglama yechildi.
4x^{2}-8x+12=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-8x+12-12=9-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
4x^{2}-8x=9-12
O‘zidan 12 ayirilsa 0 qoladi.
4x^{2}-8x=-3
9 dan 12 ni ayirish.
\frac{4x^{2}-8x}{4}=-\frac{3}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{8}{4}\right)x=-\frac{3}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{3}{4}
-8 ni 4 ga bo'lish.
x^{2}-2x+1=-\frac{3}{4}+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=\frac{1}{4}
-\frac{3}{4} ni 1 ga qo'shish.
\left(x-1\right)^{2}=\frac{1}{4}
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\frac{1}{2} x-1=-\frac{1}{2}
Qisqartirish.
x=\frac{3}{2} x=\frac{1}{2}
1 ni tenglamaning ikkala tarafiga qo'shish.