Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}=8
8 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{8}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}=2
2 ni olish uchun 8 ni 4 ga bo‘ling.
x=\sqrt{2} x=-\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4x^{2}-8=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-8\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -8 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\left(-8\right)}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\left(-8\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{128}}{2\times 4}
-16 ni -8 marotabaga ko'paytirish.
x=\frac{0±8\sqrt{2}}{2\times 4}
128 ning kvadrat ildizini chiqarish.
x=\frac{0±8\sqrt{2}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\sqrt{2}
x=\frac{0±8\sqrt{2}}{8} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{2}
x=\frac{0±8\sqrt{2}}{8} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{2} x=-\sqrt{2}
Tenglama yechildi.