x uchun yechish
x=\sqrt{3}\approx 1,732050808
x=-\sqrt{3}\approx -1,732050808
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-6-2x^{2}=0
Ikkala tarafdan 2x^{2} ni ayirish.
2x^{2}-6=0
2x^{2} ni olish uchun 4x^{2} va -2x^{2} ni birlashtirish.
2x^{2}=6
6 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
x^{2}=\frac{6}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}=3
3 ni olish uchun 6 ni 2 ga bo‘ling.
x=\sqrt{3} x=-\sqrt{3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4x^{2}-6-2x^{2}=0
Ikkala tarafdan 2x^{2} ni ayirish.
2x^{2}-6=0
2x^{2} ni olish uchun 4x^{2} va -2x^{2} ni birlashtirish.
x=\frac{0±\sqrt{0^{2}-4\times 2\left(-6\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 0 ni b va -6 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 2\left(-6\right)}}{2\times 2}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-8\left(-6\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{0±\sqrt{48}}{2\times 2}
-8 ni -6 marotabaga ko'paytirish.
x=\frac{0±4\sqrt{3}}{2\times 2}
48 ning kvadrat ildizini chiqarish.
x=\frac{0±4\sqrt{3}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\sqrt{3}
x=\frac{0±4\sqrt{3}}{4} tenglamasini yeching, bunda ± musbat.
x=-\sqrt{3}
x=\frac{0±4\sqrt{3}}{4} tenglamasini yeching, bunda ± manfiy.
x=\sqrt{3} x=-\sqrt{3}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}