x uchun yechish
x = \frac{7 \sqrt{2} + 13}{2} \approx 11,449747468
x = \frac{13 - 7 \sqrt{2}}{2} \approx 1,550252532
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-52x+71=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 4\times 71}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -52 ni b va 71 ni c bilan almashtiring.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 4\times 71}}{2\times 4}
-52 kvadratini chiqarish.
x=\frac{-\left(-52\right)±\sqrt{2704-16\times 71}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-52\right)±\sqrt{2704-1136}}{2\times 4}
-16 ni 71 marotabaga ko'paytirish.
x=\frac{-\left(-52\right)±\sqrt{1568}}{2\times 4}
2704 ni -1136 ga qo'shish.
x=\frac{-\left(-52\right)±28\sqrt{2}}{2\times 4}
1568 ning kvadrat ildizini chiqarish.
x=\frac{52±28\sqrt{2}}{2\times 4}
-52 ning teskarisi 52 ga teng.
x=\frac{52±28\sqrt{2}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{28\sqrt{2}+52}{8}
x=\frac{52±28\sqrt{2}}{8} tenglamasini yeching, bunda ± musbat. 52 ni 28\sqrt{2} ga qo'shish.
x=\frac{7\sqrt{2}+13}{2}
52+28\sqrt{2} ni 8 ga bo'lish.
x=\frac{52-28\sqrt{2}}{8}
x=\frac{52±28\sqrt{2}}{8} tenglamasini yeching, bunda ± manfiy. 52 dan 28\sqrt{2} ni ayirish.
x=\frac{13-7\sqrt{2}}{2}
52-28\sqrt{2} ni 8 ga bo'lish.
x=\frac{7\sqrt{2}+13}{2} x=\frac{13-7\sqrt{2}}{2}
Tenglama yechildi.
4x^{2}-52x+71=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-52x+71-71=-71
Tenglamaning ikkala tarafidan 71 ni ayirish.
4x^{2}-52x=-71
O‘zidan 71 ayirilsa 0 qoladi.
\frac{4x^{2}-52x}{4}=-\frac{71}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{52}{4}\right)x=-\frac{71}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-13x=-\frac{71}{4}
-52 ni 4 ga bo'lish.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-\frac{71}{4}+\left(-\frac{13}{2}\right)^{2}
-13 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{2} olish uchun. Keyin, -\frac{13}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-13x+\frac{169}{4}=\frac{-71+169}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{2} kvadratini chiqarish.
x^{2}-13x+\frac{169}{4}=\frac{49}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{71}{4} ni \frac{169}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{13}{2}\right)^{2}=\frac{49}{2}
x^{2}-13x+\frac{169}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{49}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{2}=\frac{7\sqrt{2}}{2} x-\frac{13}{2}=-\frac{7\sqrt{2}}{2}
Qisqartirish.
x=\frac{7\sqrt{2}+13}{2} x=\frac{13-7\sqrt{2}}{2}
\frac{13}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}