Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-52x+71=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\times 4\times 71}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -52 ni b va 71 ni c bilan almashtiring.
x=\frac{-\left(-52\right)±\sqrt{2704-4\times 4\times 71}}{2\times 4}
-52 kvadratini chiqarish.
x=\frac{-\left(-52\right)±\sqrt{2704-16\times 71}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-52\right)±\sqrt{2704-1136}}{2\times 4}
-16 ni 71 marotabaga ko'paytirish.
x=\frac{-\left(-52\right)±\sqrt{1568}}{2\times 4}
2704 ni -1136 ga qo'shish.
x=\frac{-\left(-52\right)±28\sqrt{2}}{2\times 4}
1568 ning kvadrat ildizini chiqarish.
x=\frac{52±28\sqrt{2}}{2\times 4}
-52 ning teskarisi 52 ga teng.
x=\frac{52±28\sqrt{2}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{28\sqrt{2}+52}{8}
x=\frac{52±28\sqrt{2}}{8} tenglamasini yeching, bunda ± musbat. 52 ni 28\sqrt{2} ga qo'shish.
x=\frac{7\sqrt{2}+13}{2}
52+28\sqrt{2} ni 8 ga bo'lish.
x=\frac{52-28\sqrt{2}}{8}
x=\frac{52±28\sqrt{2}}{8} tenglamasini yeching, bunda ± manfiy. 52 dan 28\sqrt{2} ni ayirish.
x=\frac{13-7\sqrt{2}}{2}
52-28\sqrt{2} ni 8 ga bo'lish.
x=\frac{7\sqrt{2}+13}{2} x=\frac{13-7\sqrt{2}}{2}
Tenglama yechildi.
4x^{2}-52x+71=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-52x+71-71=-71
Tenglamaning ikkala tarafidan 71 ni ayirish.
4x^{2}-52x=-71
O‘zidan 71 ayirilsa 0 qoladi.
\frac{4x^{2}-52x}{4}=-\frac{71}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{52}{4}\right)x=-\frac{71}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-13x=-\frac{71}{4}
-52 ni 4 ga bo'lish.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-\frac{71}{4}+\left(-\frac{13}{2}\right)^{2}
-13 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{13}{2} olish uchun. Keyin, -\frac{13}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-13x+\frac{169}{4}=\frac{-71+169}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{13}{2} kvadratini chiqarish.
x^{2}-13x+\frac{169}{4}=\frac{49}{2}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{71}{4} ni \frac{169}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{13}{2}\right)^{2}=\frac{49}{2}
x^{2}-13x+\frac{169}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{49}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{13}{2}=\frac{7\sqrt{2}}{2} x-\frac{13}{2}=-\frac{7\sqrt{2}}{2}
Qisqartirish.
x=\frac{7\sqrt{2}+13}{2} x=\frac{13-7\sqrt{2}}{2}
\frac{13}{2} ni tenglamaning ikkala tarafiga qo'shish.