Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-5x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -5 ni b va -1 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4\left(-1\right)}}{2\times 4}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-16\left(-1\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{25+16}}{2\times 4}
-16 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{41}}{2\times 4}
25 ni 16 ga qo'shish.
x=\frac{5±\sqrt{41}}{2\times 4}
-5 ning teskarisi 5 ga teng.
x=\frac{5±\sqrt{41}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\sqrt{41}+5}{8}
x=\frac{5±\sqrt{41}}{8} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{41} ga qo'shish.
x=\frac{5-\sqrt{41}}{8}
x=\frac{5±\sqrt{41}}{8} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{41} ni ayirish.
x=\frac{\sqrt{41}+5}{8} x=\frac{5-\sqrt{41}}{8}
Tenglama yechildi.
4x^{2}-5x-1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-5x-1-\left(-1\right)=-\left(-1\right)
1 ni tenglamaning ikkala tarafiga qo'shish.
4x^{2}-5x=-\left(-1\right)
O‘zidan -1 ayirilsa 0 qoladi.
4x^{2}-5x=1
0 dan -1 ni ayirish.
\frac{4x^{2}-5x}{4}=\frac{1}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}-\frac{5}{4}x=\frac{1}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=\frac{1}{4}+\left(-\frac{5}{8}\right)^{2}
-\frac{5}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{8} olish uchun. Keyin, -\frac{5}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{1}{4}+\frac{25}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{8} kvadratini chiqarish.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{41}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni \frac{25}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{5}{8}\right)^{2}=\frac{41}{64}
x^{2}-\frac{5}{4}x+\frac{25}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{8}=\frac{\sqrt{41}}{8} x-\frac{5}{8}=-\frac{\sqrt{41}}{8}
Qisqartirish.
x=\frac{\sqrt{41}+5}{8} x=\frac{5-\sqrt{41}}{8}
\frac{5}{8} ni tenglamaning ikkala tarafiga qo'shish.