Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-4x-23=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-23\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -4 ni b va -23 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-23\right)}}{2\times 4}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-23\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+368}}{2\times 4}
-16 ni -23 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{384}}{2\times 4}
16 ni 368 ga qo'shish.
x=\frac{-\left(-4\right)±8\sqrt{6}}{2\times 4}
384 ning kvadrat ildizini chiqarish.
x=\frac{4±8\sqrt{6}}{2\times 4}
-4 ning teskarisi 4 ga teng.
x=\frac{4±8\sqrt{6}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{8\sqrt{6}+4}{8}
x=\frac{4±8\sqrt{6}}{8} tenglamasini yeching, bunda ± musbat. 4 ni 8\sqrt{6} ga qo'shish.
x=\sqrt{6}+\frac{1}{2}
4+8\sqrt{6} ni 8 ga bo'lish.
x=\frac{4-8\sqrt{6}}{8}
x=\frac{4±8\sqrt{6}}{8} tenglamasini yeching, bunda ± manfiy. 4 dan 8\sqrt{6} ni ayirish.
x=\frac{1}{2}-\sqrt{6}
4-8\sqrt{6} ni 8 ga bo'lish.
x=\sqrt{6}+\frac{1}{2} x=\frac{1}{2}-\sqrt{6}
Tenglama yechildi.
4x^{2}-4x-23=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-4x-23-\left(-23\right)=-\left(-23\right)
23 ni tenglamaning ikkala tarafiga qo'shish.
4x^{2}-4x=-\left(-23\right)
O‘zidan -23 ayirilsa 0 qoladi.
4x^{2}-4x=23
0 dan -23 ni ayirish.
\frac{4x^{2}-4x}{4}=\frac{23}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{23}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{23}{4}
-4 ni 4 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\frac{23}{4}+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=\frac{23+1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=6
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{23}{4} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{2}\right)^{2}=6
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{6}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\sqrt{6} x-\frac{1}{2}=-\sqrt{6}
Qisqartirish.
x=\sqrt{6}+\frac{1}{2} x=\frac{1}{2}-\sqrt{6}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.