Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-2x+\frac{1}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 4\times \frac{1}{4}}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -2 ni b va \frac{1}{4} ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 4\times \frac{1}{4}}}{2\times 4}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4-16\times \frac{1}{4}}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2\times 4}
-16 ni \frac{1}{4} marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{0}}{2\times 4}
4 ni -4 ga qo'shish.
x=-\frac{-2}{2\times 4}
0 ning kvadrat ildizini chiqarish.
x=\frac{2}{2\times 4}
-2 ning teskarisi 2 ga teng.
x=\frac{2}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{1}{4}
\frac{2}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
4x^{2}-2x+\frac{1}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-2x+\frac{1}{4}-\frac{1}{4}=-\frac{1}{4}
Tenglamaning ikkala tarafidan \frac{1}{4} ni ayirish.
4x^{2}-2x=-\frac{1}{4}
O‘zidan \frac{1}{4} ayirilsa 0 qoladi.
\frac{4x^{2}-2x}{4}=-\frac{\frac{1}{4}}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{2}{4}\right)x=-\frac{\frac{1}{4}}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{1}{2}x=-\frac{\frac{1}{4}}{4}
\frac{-2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{1}{2}x=-\frac{1}{16}
-\frac{1}{4} ni 4 ga bo'lish.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=-\frac{1}{16}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{4} olish uchun. Keyin, -\frac{1}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{-1+1}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{4} kvadratini chiqarish.
x^{2}-\frac{1}{2}x+\frac{1}{16}=0
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{16} ni \frac{1}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{1}{4}\right)^{2}=0
x^{2}-\frac{1}{2}x+\frac{1}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{4}=0 x-\frac{1}{4}=0
Qisqartirish.
x=\frac{1}{4} x=\frac{1}{4}
\frac{1}{4} ni tenglamaning ikkala tarafiga qo'shish.
x=\frac{1}{4}
Tenglama yechildi. Yechimlar bir xil.