Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}=16+2
2 ni ikki tarafga qo’shing.
4x^{2}=18
18 olish uchun 16 va 2'ni qo'shing.
x^{2}=\frac{18}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}=\frac{9}{2}
\frac{18}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4x^{2}-2-16=0
Ikkala tarafdan 16 ni ayirish.
4x^{2}-18=0
-18 olish uchun -2 dan 16 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-18\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -18 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\left(-18\right)}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\left(-18\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{288}}{2\times 4}
-16 ni -18 marotabaga ko'paytirish.
x=\frac{0±12\sqrt{2}}{2\times 4}
288 ning kvadrat ildizini chiqarish.
x=\frac{0±12\sqrt{2}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{3\sqrt{2}}{2}
x=\frac{0±12\sqrt{2}}{8} tenglamasini yeching, bunda ± musbat.
x=-\frac{3\sqrt{2}}{2}
x=\frac{0±12\sqrt{2}}{8} tenglamasini yeching, bunda ± manfiy.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
Tenglama yechildi.