x uchun yechish
x=5
x=40
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-180x+800=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-180\right)±\sqrt{\left(-180\right)^{2}-4\times 4\times 800}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -180 ni b va 800 ni c bilan almashtiring.
x=\frac{-\left(-180\right)±\sqrt{32400-4\times 4\times 800}}{2\times 4}
-180 kvadratini chiqarish.
x=\frac{-\left(-180\right)±\sqrt{32400-16\times 800}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-180\right)±\sqrt{32400-12800}}{2\times 4}
-16 ni 800 marotabaga ko'paytirish.
x=\frac{-\left(-180\right)±\sqrt{19600}}{2\times 4}
32400 ni -12800 ga qo'shish.
x=\frac{-\left(-180\right)±140}{2\times 4}
19600 ning kvadrat ildizini chiqarish.
x=\frac{180±140}{2\times 4}
-180 ning teskarisi 180 ga teng.
x=\frac{180±140}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{320}{8}
x=\frac{180±140}{8} tenglamasini yeching, bunda ± musbat. 180 ni 140 ga qo'shish.
x=40
320 ni 8 ga bo'lish.
x=\frac{40}{8}
x=\frac{180±140}{8} tenglamasini yeching, bunda ± manfiy. 180 dan 140 ni ayirish.
x=5
40 ni 8 ga bo'lish.
x=40 x=5
Tenglama yechildi.
4x^{2}-180x+800=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-180x+800-800=-800
Tenglamaning ikkala tarafidan 800 ni ayirish.
4x^{2}-180x=-800
O‘zidan 800 ayirilsa 0 qoladi.
\frac{4x^{2}-180x}{4}=-\frac{800}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{180}{4}\right)x=-\frac{800}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-45x=-\frac{800}{4}
-180 ni 4 ga bo'lish.
x^{2}-45x=-200
-800 ni 4 ga bo'lish.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=-200+\left(-\frac{45}{2}\right)^{2}
-45 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{45}{2} olish uchun. Keyin, -\frac{45}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-45x+\frac{2025}{4}=-200+\frac{2025}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{45}{2} kvadratini chiqarish.
x^{2}-45x+\frac{2025}{4}=\frac{1225}{4}
-200 ni \frac{2025}{4} ga qo'shish.
\left(x-\frac{45}{2}\right)^{2}=\frac{1225}{4}
x^{2}-45x+\frac{2025}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{1225}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{45}{2}=\frac{35}{2} x-\frac{45}{2}=-\frac{35}{2}
Qisqartirish.
x=40 x=5
\frac{45}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}