Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-14x=9
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
4x^{2}-14x-9=9-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
4x^{2}-14x-9=0
O‘zidan 9 ayirilsa 0 qoladi.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\left(-9\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -14 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\left(-9\right)}}{2\times 4}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-16\left(-9\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196+144}}{2\times 4}
-16 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{340}}{2\times 4}
196 ni 144 ga qo'shish.
x=\frac{-\left(-14\right)±2\sqrt{85}}{2\times 4}
340 ning kvadrat ildizini chiqarish.
x=\frac{14±2\sqrt{85}}{2\times 4}
-14 ning teskarisi 14 ga teng.
x=\frac{14±2\sqrt{85}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{2\sqrt{85}+14}{8}
x=\frac{14±2\sqrt{85}}{8} tenglamasini yeching, bunda ± musbat. 14 ni 2\sqrt{85} ga qo'shish.
x=\frac{\sqrt{85}+7}{4}
14+2\sqrt{85} ni 8 ga bo'lish.
x=\frac{14-2\sqrt{85}}{8}
x=\frac{14±2\sqrt{85}}{8} tenglamasini yeching, bunda ± manfiy. 14 dan 2\sqrt{85} ni ayirish.
x=\frac{7-\sqrt{85}}{4}
14-2\sqrt{85} ni 8 ga bo'lish.
x=\frac{\sqrt{85}+7}{4} x=\frac{7-\sqrt{85}}{4}
Tenglama yechildi.
4x^{2}-14x=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4x^{2}-14x}{4}=\frac{9}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{14}{4}\right)x=\frac{9}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{2}x=\frac{9}{4}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=\frac{9}{4}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{4} olish uchun. Keyin, -\frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{9}{4}+\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{4} kvadratini chiqarish.
x^{2}-\frac{7}{2}x+\frac{49}{16}=\frac{85}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{4} ni \frac{49}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{4}\right)^{2}=\frac{85}{16}
x^{2}-\frac{7}{2}x+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{\frac{85}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{4}=\frac{\sqrt{85}}{4} x-\frac{7}{4}=-\frac{\sqrt{85}}{4}
Qisqartirish.
x=\frac{\sqrt{85}+7}{4} x=\frac{7-\sqrt{85}}{4}
\frac{7}{4} ni tenglamaning ikkala tarafiga qo'shish.