x uchun yechish (complex solution)
x=\frac{7+\sqrt{3}i}{4}\approx 1,75+0,433012702i
x=\frac{-\sqrt{3}i+7}{4}\approx 1,75-0,433012702i
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-14x+13=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 4\times 13}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -14 ni b va 13 ni c bilan almashtiring.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 4\times 13}}{2\times 4}
-14 kvadratini chiqarish.
x=\frac{-\left(-14\right)±\sqrt{196-16\times 13}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{196-208}}{2\times 4}
-16 ni 13 marotabaga ko'paytirish.
x=\frac{-\left(-14\right)±\sqrt{-12}}{2\times 4}
196 ni -208 ga qo'shish.
x=\frac{-\left(-14\right)±2\sqrt{3}i}{2\times 4}
-12 ning kvadrat ildizini chiqarish.
x=\frac{14±2\sqrt{3}i}{2\times 4}
-14 ning teskarisi 14 ga teng.
x=\frac{14±2\sqrt{3}i}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{14+2\sqrt{3}i}{8}
x=\frac{14±2\sqrt{3}i}{8} tenglamasini yeching, bunda ± musbat. 14 ni 2i\sqrt{3} ga qo'shish.
x=\frac{7+\sqrt{3}i}{4}
14+2i\sqrt{3} ni 8 ga bo'lish.
x=\frac{-2\sqrt{3}i+14}{8}
x=\frac{14±2\sqrt{3}i}{8} tenglamasini yeching, bunda ± manfiy. 14 dan 2i\sqrt{3} ni ayirish.
x=\frac{-\sqrt{3}i+7}{4}
14-2i\sqrt{3} ni 8 ga bo'lish.
x=\frac{7+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+7}{4}
Tenglama yechildi.
4x^{2}-14x+13=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-14x+13-13=-13
Tenglamaning ikkala tarafidan 13 ni ayirish.
4x^{2}-14x=-13
O‘zidan 13 ayirilsa 0 qoladi.
\frac{4x^{2}-14x}{4}=-\frac{13}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{14}{4}\right)x=-\frac{13}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{7}{2}x=-\frac{13}{4}
\frac{-14}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{7}{2}x+\left(-\frac{7}{4}\right)^{2}=-\frac{13}{4}+\left(-\frac{7}{4}\right)^{2}
-\frac{7}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{7}{4} olish uchun. Keyin, -\frac{7}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{13}{4}+\frac{49}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{7}{4} kvadratini chiqarish.
x^{2}-\frac{7}{2}x+\frac{49}{16}=-\frac{3}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{13}{4} ni \frac{49}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{7}{4}\right)^{2}=-\frac{3}{16}
x^{2}-\frac{7}{2}x+\frac{49}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{7}{4}\right)^{2}}=\sqrt{-\frac{3}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{7}{4}=\frac{\sqrt{3}i}{4} x-\frac{7}{4}=-\frac{\sqrt{3}i}{4}
Qisqartirish.
x=\frac{7+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+7}{4}
\frac{7}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}