Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-12x-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-3\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-3\right)}}{2\times 4}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-3\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+48}}{2\times 4}
-16 ni -3 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{192}}{2\times 4}
144 ni 48 ga qo'shish.
x=\frac{-\left(-12\right)±8\sqrt{3}}{2\times 4}
192 ning kvadrat ildizini chiqarish.
x=\frac{12±8\sqrt{3}}{2\times 4}
-12 ning teskarisi 12 ga teng.
x=\frac{12±8\sqrt{3}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{8\sqrt{3}+12}{8}
x=\frac{12±8\sqrt{3}}{8} tenglamasini yeching, bunda ± musbat. 12 ni 8\sqrt{3} ga qo'shish.
x=\sqrt{3}+\frac{3}{2}
12+8\sqrt{3} ni 8 ga bo'lish.
x=\frac{12-8\sqrt{3}}{8}
x=\frac{12±8\sqrt{3}}{8} tenglamasini yeching, bunda ± manfiy. 12 dan 8\sqrt{3} ni ayirish.
x=\frac{3}{2}-\sqrt{3}
12-8\sqrt{3} ni 8 ga bo'lish.
4x^{2}-12x-3=4\left(x-\left(\sqrt{3}+\frac{3}{2}\right)\right)\left(x-\left(\frac{3}{2}-\sqrt{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{3}{2}+\sqrt{3} ga va x_{2} uchun \frac{3}{2}-\sqrt{3} ga bo‘ling.