x uchun yechish
x = \frac{\sqrt{201} - 3}{8} \approx 1,39718086
x=\frac{-\sqrt{201}-3}{8}\approx -2,14718086
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}-12=-3x
Ikkala tarafdan 12 ni ayirish.
4x^{2}-12+3x=0
3x ni ikki tarafga qo’shing.
4x^{2}+3x-12=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-3±\sqrt{3^{2}-4\times 4\left(-12\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 3 ni b va -12 ni c bilan almashtiring.
x=\frac{-3±\sqrt{9-4\times 4\left(-12\right)}}{2\times 4}
3 kvadratini chiqarish.
x=\frac{-3±\sqrt{9-16\left(-12\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{9+192}}{2\times 4}
-16 ni -12 marotabaga ko'paytirish.
x=\frac{-3±\sqrt{201}}{2\times 4}
9 ni 192 ga qo'shish.
x=\frac{-3±\sqrt{201}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\sqrt{201}-3}{8}
x=\frac{-3±\sqrt{201}}{8} tenglamasini yeching, bunda ± musbat. -3 ni \sqrt{201} ga qo'shish.
x=\frac{-\sqrt{201}-3}{8}
x=\frac{-3±\sqrt{201}}{8} tenglamasini yeching, bunda ± manfiy. -3 dan \sqrt{201} ni ayirish.
x=\frac{\sqrt{201}-3}{8} x=\frac{-\sqrt{201}-3}{8}
Tenglama yechildi.
4x^{2}+3x=12
3x ni ikki tarafga qo’shing.
\frac{4x^{2}+3x}{4}=\frac{12}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{3}{4}x=\frac{12}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{4}x=3
12 ni 4 ga bo'lish.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=3+\left(\frac{3}{8}\right)^{2}
\frac{3}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{8} olish uchun. Keyin, \frac{3}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{4}x+\frac{9}{64}=3+\frac{9}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{8} kvadratini chiqarish.
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{201}{64}
3 ni \frac{9}{64} ga qo'shish.
\left(x+\frac{3}{8}\right)^{2}=\frac{201}{64}
x^{2}+\frac{3}{4}x+\frac{9}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{201}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{8}=\frac{\sqrt{201}}{8} x+\frac{3}{8}=-\frac{\sqrt{201}}{8}
Qisqartirish.
x=\frac{\sqrt{201}-3}{8} x=\frac{-\sqrt{201}-3}{8}
Tenglamaning ikkala tarafidan \frac{3}{8} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}