Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+x-2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-1±\sqrt{1^{2}-4\times 4\left(-2\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 1 ni b va -2 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\times 4\left(-2\right)}}{2\times 4}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1-16\left(-2\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1+32}}{2\times 4}
-16 ni -2 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{33}}{2\times 4}
1 ni 32 ga qo'shish.
x=\frac{-1±\sqrt{33}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\sqrt{33}-1}{8}
x=\frac{-1±\sqrt{33}}{8} tenglamasini yeching, bunda ± musbat. -1 ni \sqrt{33} ga qo'shish.
x=\frac{-\sqrt{33}-1}{8}
x=\frac{-1±\sqrt{33}}{8} tenglamasini yeching, bunda ± manfiy. -1 dan \sqrt{33} ni ayirish.
x=\frac{\sqrt{33}-1}{8} x=\frac{-\sqrt{33}-1}{8}
Tenglama yechildi.
4x^{2}+x-2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}+x-2-\left(-2\right)=-\left(-2\right)
2 ni tenglamaning ikkala tarafiga qo'shish.
4x^{2}+x=-\left(-2\right)
O‘zidan -2 ayirilsa 0 qoladi.
4x^{2}+x=2
0 dan -2 ni ayirish.
\frac{4x^{2}+x}{4}=\frac{2}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{1}{4}x=\frac{2}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{4}x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\frac{1}{2}+\left(\frac{1}{8}\right)^{2}
\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{8} olish uchun. Keyin, \frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{2}+\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{8} kvadratini chiqarish.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{33}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{2} ni \frac{1}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{8}\right)^{2}=\frac{33}{64}
x^{2}+\frac{1}{4}x+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{33}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{8}=\frac{\sqrt{33}}{8} x+\frac{1}{8}=-\frac{\sqrt{33}}{8}
Qisqartirish.
x=\frac{\sqrt{33}-1}{8} x=\frac{-\sqrt{33}-1}{8}
Tenglamaning ikkala tarafidan \frac{1}{8} ni ayirish.