x uchun yechish
x=\frac{\sqrt{2}}{2}-1\approx -0,292893219
x=-\frac{\sqrt{2}}{2}-1\approx -1,707106781
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}+8x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-8±\sqrt{8^{2}-4\times 4\times 2}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 8 ni b va 2 ni c bilan almashtiring.
x=\frac{-8±\sqrt{64-4\times 4\times 2}}{2\times 4}
8 kvadratini chiqarish.
x=\frac{-8±\sqrt{64-16\times 2}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{64-32}}{2\times 4}
-16 ni 2 marotabaga ko'paytirish.
x=\frac{-8±\sqrt{32}}{2\times 4}
64 ni -32 ga qo'shish.
x=\frac{-8±4\sqrt{2}}{2\times 4}
32 ning kvadrat ildizini chiqarish.
x=\frac{-8±4\sqrt{2}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{4\sqrt{2}-8}{8}
x=\frac{-8±4\sqrt{2}}{8} tenglamasini yeching, bunda ± musbat. -8 ni 4\sqrt{2} ga qo'shish.
x=\frac{\sqrt{2}}{2}-1
-8+4\sqrt{2} ni 8 ga bo'lish.
x=\frac{-4\sqrt{2}-8}{8}
x=\frac{-8±4\sqrt{2}}{8} tenglamasini yeching, bunda ± manfiy. -8 dan 4\sqrt{2} ni ayirish.
x=-\frac{\sqrt{2}}{2}-1
-8-4\sqrt{2} ni 8 ga bo'lish.
x=\frac{\sqrt{2}}{2}-1 x=-\frac{\sqrt{2}}{2}-1
Tenglama yechildi.
4x^{2}+8x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}+8x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
4x^{2}+8x=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{4x^{2}+8x}{4}=-\frac{2}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{8}{4}x=-\frac{2}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+2x=-\frac{2}{4}
8 ni 4 ga bo'lish.
x^{2}+2x=-\frac{1}{2}
\frac{-2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+2x+1^{2}=-\frac{1}{2}+1^{2}
2 ni bo‘lish, x shartining koeffitsienti, 2 ga 1 olish uchun. Keyin, 1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+2x+1=-\frac{1}{2}+1
1 kvadratini chiqarish.
x^{2}+2x+1=\frac{1}{2}
-\frac{1}{2} ni 1 ga qo'shish.
\left(x+1\right)^{2}=\frac{1}{2}
x^{2}+2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{1}{2}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+1=\frac{\sqrt{2}}{2} x+1=-\frac{\sqrt{2}}{2}
Qisqartirish.
x=\frac{\sqrt{2}}{2}-1 x=-\frac{\sqrt{2}}{2}-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}