Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+7x+33=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\times 4\times 33}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 7 ni b va 33 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 4\times 33}}{2\times 4}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-16\times 33}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49-528}}{2\times 4}
-16 ni 33 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{-479}}{2\times 4}
49 ni -528 ga qo'shish.
x=\frac{-7±\sqrt{479}i}{2\times 4}
-479 ning kvadrat ildizini chiqarish.
x=\frac{-7±\sqrt{479}i}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{-7+\sqrt{479}i}{8}
x=\frac{-7±\sqrt{479}i}{8} tenglamasini yeching, bunda ± musbat. -7 ni i\sqrt{479} ga qo'shish.
x=\frac{-\sqrt{479}i-7}{8}
x=\frac{-7±\sqrt{479}i}{8} tenglamasini yeching, bunda ± manfiy. -7 dan i\sqrt{479} ni ayirish.
x=\frac{-7+\sqrt{479}i}{8} x=\frac{-\sqrt{479}i-7}{8}
Tenglama yechildi.
4x^{2}+7x+33=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}+7x+33-33=-33
Tenglamaning ikkala tarafidan 33 ni ayirish.
4x^{2}+7x=-33
O‘zidan 33 ayirilsa 0 qoladi.
\frac{4x^{2}+7x}{4}=-\frac{33}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{7}{4}x=-\frac{33}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=-\frac{33}{4}+\left(\frac{7}{8}\right)^{2}
\frac{7}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{8} olish uchun. Keyin, \frac{7}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{4}x+\frac{49}{64}=-\frac{33}{4}+\frac{49}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{8} kvadratini chiqarish.
x^{2}+\frac{7}{4}x+\frac{49}{64}=-\frac{479}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{33}{4} ni \frac{49}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{8}\right)^{2}=-\frac{479}{64}
x^{2}+\frac{7}{4}x+\frac{49}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{-\frac{479}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{8}=\frac{\sqrt{479}i}{8} x+\frac{7}{8}=-\frac{\sqrt{479}i}{8}
Qisqartirish.
x=\frac{-7+\sqrt{479}i}{8} x=\frac{-\sqrt{479}i-7}{8}
Tenglamaning ikkala tarafidan \frac{7}{8} ni ayirish.