Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+6x-3=12
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
4x^{2}+6x-3-12=12-12
Tenglamaning ikkala tarafidan 12 ni ayirish.
4x^{2}+6x-3-12=0
O‘zidan 12 ayirilsa 0 qoladi.
4x^{2}+6x-15=0
-3 dan 12 ni ayirish.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-15\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 6 ni b va -15 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 4\left(-15\right)}}{2\times 4}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-16\left(-15\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+240}}{2\times 4}
-16 ni -15 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{276}}{2\times 4}
36 ni 240 ga qo'shish.
x=\frac{-6±2\sqrt{69}}{2\times 4}
276 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{69}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{2\sqrt{69}-6}{8}
x=\frac{-6±2\sqrt{69}}{8} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{69} ga qo'shish.
x=\frac{\sqrt{69}-3}{4}
-6+2\sqrt{69} ni 8 ga bo'lish.
x=\frac{-2\sqrt{69}-6}{8}
x=\frac{-6±2\sqrt{69}}{8} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{69} ni ayirish.
x=\frac{-\sqrt{69}-3}{4}
-6-2\sqrt{69} ni 8 ga bo'lish.
x=\frac{\sqrt{69}-3}{4} x=\frac{-\sqrt{69}-3}{4}
Tenglama yechildi.
4x^{2}+6x-3=12
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}+6x-3-\left(-3\right)=12-\left(-3\right)
3 ni tenglamaning ikkala tarafiga qo'shish.
4x^{2}+6x=12-\left(-3\right)
O‘zidan -3 ayirilsa 0 qoladi.
4x^{2}+6x=15
12 dan -3 ni ayirish.
\frac{4x^{2}+6x}{4}=\frac{15}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{6}{4}x=\frac{15}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{2}x=\frac{15}{4}
\frac{6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{15}{4}+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{4} olish uchun. Keyin, \frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{15}{4}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{4} kvadratini chiqarish.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{69}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{15}{4} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{4}\right)^{2}=\frac{69}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{69}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{4}=\frac{\sqrt{69}}{4} x+\frac{3}{4}=-\frac{\sqrt{69}}{4}
Qisqartirish.
x=\frac{\sqrt{69}-3}{4} x=\frac{-\sqrt{69}-3}{4}
Tenglamaning ikkala tarafidan \frac{3}{4} ni ayirish.