Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+6x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times 4}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 6 ni b va 1 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times 4}}{2\times 4}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-16}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{20}}{2\times 4}
36 ni -16 ga qo'shish.
x=\frac{-6±2\sqrt{5}}{2\times 4}
20 ning kvadrat ildizini chiqarish.
x=\frac{-6±2\sqrt{5}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{2\sqrt{5}-6}{8}
x=\frac{-6±2\sqrt{5}}{8} tenglamasini yeching, bunda ± musbat. -6 ni 2\sqrt{5} ga qo'shish.
x=\frac{\sqrt{5}-3}{4}
-6+2\sqrt{5} ni 8 ga bo'lish.
x=\frac{-2\sqrt{5}-6}{8}
x=\frac{-6±2\sqrt{5}}{8} tenglamasini yeching, bunda ± manfiy. -6 dan 2\sqrt{5} ni ayirish.
x=\frac{-\sqrt{5}-3}{4}
-6-2\sqrt{5} ni 8 ga bo'lish.
x=\frac{\sqrt{5}-3}{4} x=\frac{-\sqrt{5}-3}{4}
Tenglama yechildi.
4x^{2}+6x+1=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}+6x+1-1=-1
Tenglamaning ikkala tarafidan 1 ni ayirish.
4x^{2}+6x=-1
O‘zidan 1 ayirilsa 0 qoladi.
\frac{4x^{2}+6x}{4}=-\frac{1}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{6}{4}x=-\frac{1}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{3}{2}x=-\frac{1}{4}
\frac{6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=-\frac{1}{4}+\left(\frac{3}{4}\right)^{2}
\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{3}{4} olish uchun. Keyin, \frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{3}{2}x+\frac{9}{16}=-\frac{1}{4}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{3}{4} kvadratini chiqarish.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{1}{4} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{3}{4}\right)^{2}=\frac{5}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{3}{4}=\frac{\sqrt{5}}{4} x+\frac{3}{4}=-\frac{\sqrt{5}}{4}
Qisqartirish.
x=\frac{\sqrt{5}-3}{4} x=\frac{-\sqrt{5}-3}{4}
Tenglamaning ikkala tarafidan \frac{3}{4} ni ayirish.