Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+4x+9=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-4±\sqrt{4^{2}-4\times 4\times 9}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 4 ni b va 9 ni c bilan almashtiring.
x=\frac{-4±\sqrt{16-4\times 4\times 9}}{2\times 4}
4 kvadratini chiqarish.
x=\frac{-4±\sqrt{16-16\times 9}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{16-144}}{2\times 4}
-16 ni 9 marotabaga ko'paytirish.
x=\frac{-4±\sqrt{-128}}{2\times 4}
16 ni -144 ga qo'shish.
x=\frac{-4±8\sqrt{2}i}{2\times 4}
-128 ning kvadrat ildizini chiqarish.
x=\frac{-4±8\sqrt{2}i}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{-4+2\times 2^{\frac{5}{2}}i}{8}
x=\frac{-4±8\sqrt{2}i}{8} tenglamasini yeching, bunda ± musbat. -4 ni 8i\sqrt{2} ga qo'shish.
x=-\frac{1}{2}+\sqrt{2}i
-4+2i\times 2^{\frac{5}{2}} ni 8 ga bo'lish.
x=\frac{-2\times 2^{\frac{5}{2}}i-4}{8}
x=\frac{-4±8\sqrt{2}i}{8} tenglamasini yeching, bunda ± manfiy. -4 dan 8i\sqrt{2} ni ayirish.
x=-\sqrt{2}i-\frac{1}{2}
-4-2i\times 2^{\frac{5}{2}} ni 8 ga bo'lish.
x=-\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{1}{2}
Tenglama yechildi.
4x^{2}+4x+9=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}+4x+9-9=-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
4x^{2}+4x=-9
O‘zidan 9 ayirilsa 0 qoladi.
\frac{4x^{2}+4x}{4}=-\frac{9}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{4}{4}x=-\frac{9}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+x=-\frac{9}{4}
4 ni 4 ga bo'lish.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{1}{2}\right)^{2}
1 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{2} olish uchun. Keyin, \frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+x+\frac{1}{4}=\frac{-9+1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{2} kvadratini chiqarish.
x^{2}+x+\frac{1}{4}=-2
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{4} ni \frac{1}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{1}{2}\right)^{2}=-2
x^{2}+x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{-2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{2}=\sqrt{2}i x+\frac{1}{2}=-\sqrt{2}i
Qisqartirish.
x=-\frac{1}{2}+\sqrt{2}i x=-\sqrt{2}i-\frac{1}{2}
Tenglamaning ikkala tarafidan \frac{1}{2} ni ayirish.