q uchun yechish
q=4\left(p\left(2x+p\right)-3x\right)
p uchun yechish (complex solution)
p=-\frac{\sqrt{4x^{2}+12x+q}}{2}-x
p=\frac{\sqrt{4x^{2}+12x+q}}{2}-x
p uchun yechish
p=-\frac{\sqrt{4x^{2}+12x+q}}{2}-x
p=\frac{\sqrt{4x^{2}+12x+q}}{2}-x\text{, }q\geq -4x^{2}-12x
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x^{2}+12x=4\left(x^{2}+2xp+p^{2}\right)-q
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x+p\right)^{2} kengaytirilishi uchun ishlating.
4x^{2}+12x=4x^{2}+8xp+4p^{2}-q
4 ga x^{2}+2xp+p^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x^{2}+8xp+4p^{2}-q=4x^{2}+12x
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
8xp+4p^{2}-q=4x^{2}+12x-4x^{2}
Ikkala tarafdan 4x^{2} ni ayirish.
8xp+4p^{2}-q=12x
0 ni olish uchun 4x^{2} va -4x^{2} ni birlashtirish.
4p^{2}-q=12x-8xp
Ikkala tarafdan 8xp ni ayirish.
-q=12x-8xp-4p^{2}
Ikkala tarafdan 4p^{2} ni ayirish.
-q=-8px+12x-4p^{2}
Tenglama standart shaklda.
\frac{-q}{-1}=\frac{-8px+12x-4p^{2}}{-1}
Ikki tarafini -1 ga bo‘ling.
q=\frac{-8px+12x-4p^{2}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
q=8px-12x+4p^{2}
12x-8xp-4p^{2} ni -1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}