Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x+102=-60x+120x^{2}
-20x ga 3-6x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+102+60x=120x^{2}
60x ni ikki tarafga qo’shing.
64x+102=120x^{2}
64x ni olish uchun 4x va 60x ni birlashtirish.
64x+102-120x^{2}=0
Ikkala tarafdan 120x^{2} ni ayirish.
-120x^{2}+64x+102=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-64±\sqrt{64^{2}-4\left(-120\right)\times 102}}{2\left(-120\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -120 ni a, 64 ni b va 102 ni c bilan almashtiring.
x=\frac{-64±\sqrt{4096-4\left(-120\right)\times 102}}{2\left(-120\right)}
64 kvadratini chiqarish.
x=\frac{-64±\sqrt{4096+480\times 102}}{2\left(-120\right)}
-4 ni -120 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{4096+48960}}{2\left(-120\right)}
480 ni 102 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{53056}}{2\left(-120\right)}
4096 ni 48960 ga qo'shish.
x=\frac{-64±8\sqrt{829}}{2\left(-120\right)}
53056 ning kvadrat ildizini chiqarish.
x=\frac{-64±8\sqrt{829}}{-240}
2 ni -120 marotabaga ko'paytirish.
x=\frac{8\sqrt{829}-64}{-240}
x=\frac{-64±8\sqrt{829}}{-240} tenglamasini yeching, bunda ± musbat. -64 ni 8\sqrt{829} ga qo'shish.
x=-\frac{\sqrt{829}}{30}+\frac{4}{15}
-64+8\sqrt{829} ni -240 ga bo'lish.
x=\frac{-8\sqrt{829}-64}{-240}
x=\frac{-64±8\sqrt{829}}{-240} tenglamasini yeching, bunda ± manfiy. -64 dan 8\sqrt{829} ni ayirish.
x=\frac{\sqrt{829}}{30}+\frac{4}{15}
-64-8\sqrt{829} ni -240 ga bo'lish.
x=-\frac{\sqrt{829}}{30}+\frac{4}{15} x=\frac{\sqrt{829}}{30}+\frac{4}{15}
Tenglama yechildi.
4x+102=-60x+120x^{2}
-20x ga 3-6x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+102+60x=120x^{2}
60x ni ikki tarafga qo’shing.
64x+102=120x^{2}
64x ni olish uchun 4x va 60x ni birlashtirish.
64x+102-120x^{2}=0
Ikkala tarafdan 120x^{2} ni ayirish.
64x-120x^{2}=-102
Ikkala tarafdan 102 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-120x^{2}+64x=-102
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-120x^{2}+64x}{-120}=-\frac{102}{-120}
Ikki tarafini -120 ga bo‘ling.
x^{2}+\frac{64}{-120}x=-\frac{102}{-120}
-120 ga bo'lish -120 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{8}{15}x=-\frac{102}{-120}
\frac{64}{-120} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{15}x=\frac{17}{20}
\frac{-102}{-120} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=\frac{17}{20}+\left(-\frac{4}{15}\right)^{2}
-\frac{8}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4}{15} olish uchun. Keyin, -\frac{4}{15} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{17}{20}+\frac{16}{225}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4}{15} kvadratini chiqarish.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{829}{900}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{17}{20} ni \frac{16}{225} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{4}{15}\right)^{2}=\frac{829}{900}
x^{2}-\frac{8}{15}x+\frac{16}{225} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{\frac{829}{900}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4}{15}=\frac{\sqrt{829}}{30} x-\frac{4}{15}=-\frac{\sqrt{829}}{30}
Qisqartirish.
x=\frac{\sqrt{829}}{30}+\frac{4}{15} x=-\frac{\sqrt{829}}{30}+\frac{4}{15}
\frac{4}{15} ni tenglamaning ikkala tarafiga qo'shish.