x uchun yechish
x=\frac{\sqrt{829}}{30}+\frac{4}{15}\approx 1,226412003
x=-\frac{\sqrt{829}}{30}+\frac{4}{15}\approx -0,69307867
Grafik
Baham ko'rish
Klipbordga nusxa olish
4x+102=-60x+120x^{2}
-20x ga 3-6x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+102+60x=120x^{2}
60x ni ikki tarafga qo’shing.
64x+102=120x^{2}
64x ni olish uchun 4x va 60x ni birlashtirish.
64x+102-120x^{2}=0
Ikkala tarafdan 120x^{2} ni ayirish.
-120x^{2}+64x+102=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-64±\sqrt{64^{2}-4\left(-120\right)\times 102}}{2\left(-120\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -120 ni a, 64 ni b va 102 ni c bilan almashtiring.
x=\frac{-64±\sqrt{4096-4\left(-120\right)\times 102}}{2\left(-120\right)}
64 kvadratini chiqarish.
x=\frac{-64±\sqrt{4096+480\times 102}}{2\left(-120\right)}
-4 ni -120 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{4096+48960}}{2\left(-120\right)}
480 ni 102 marotabaga ko'paytirish.
x=\frac{-64±\sqrt{53056}}{2\left(-120\right)}
4096 ni 48960 ga qo'shish.
x=\frac{-64±8\sqrt{829}}{2\left(-120\right)}
53056 ning kvadrat ildizini chiqarish.
x=\frac{-64±8\sqrt{829}}{-240}
2 ni -120 marotabaga ko'paytirish.
x=\frac{8\sqrt{829}-64}{-240}
x=\frac{-64±8\sqrt{829}}{-240} tenglamasini yeching, bunda ± musbat. -64 ni 8\sqrt{829} ga qo'shish.
x=-\frac{\sqrt{829}}{30}+\frac{4}{15}
-64+8\sqrt{829} ni -240 ga bo'lish.
x=\frac{-8\sqrt{829}-64}{-240}
x=\frac{-64±8\sqrt{829}}{-240} tenglamasini yeching, bunda ± manfiy. -64 dan 8\sqrt{829} ni ayirish.
x=\frac{\sqrt{829}}{30}+\frac{4}{15}
-64-8\sqrt{829} ni -240 ga bo'lish.
x=-\frac{\sqrt{829}}{30}+\frac{4}{15} x=\frac{\sqrt{829}}{30}+\frac{4}{15}
Tenglama yechildi.
4x+102=-60x+120x^{2}
-20x ga 3-6x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4x+102+60x=120x^{2}
60x ni ikki tarafga qo’shing.
64x+102=120x^{2}
64x ni olish uchun 4x va 60x ni birlashtirish.
64x+102-120x^{2}=0
Ikkala tarafdan 120x^{2} ni ayirish.
64x-120x^{2}=-102
Ikkala tarafdan 102 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-120x^{2}+64x=-102
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-120x^{2}+64x}{-120}=-\frac{102}{-120}
Ikki tarafini -120 ga bo‘ling.
x^{2}+\frac{64}{-120}x=-\frac{102}{-120}
-120 ga bo'lish -120 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{8}{15}x=-\frac{102}{-120}
\frac{64}{-120} ulushini 8 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{15}x=\frac{17}{20}
\frac{-102}{-120} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{8}{15}x+\left(-\frac{4}{15}\right)^{2}=\frac{17}{20}+\left(-\frac{4}{15}\right)^{2}
-\frac{8}{15} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4}{15} olish uchun. Keyin, -\frac{4}{15} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{17}{20}+\frac{16}{225}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4}{15} kvadratini chiqarish.
x^{2}-\frac{8}{15}x+\frac{16}{225}=\frac{829}{900}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{17}{20} ni \frac{16}{225} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{4}{15}\right)^{2}=\frac{829}{900}
x^{2}-\frac{8}{15}x+\frac{16}{225} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4}{15}\right)^{2}}=\sqrt{\frac{829}{900}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4}{15}=\frac{\sqrt{829}}{30} x-\frac{4}{15}=-\frac{\sqrt{829}}{30}
Qisqartirish.
x=\frac{\sqrt{829}}{30}+\frac{4}{15} x=-\frac{\sqrt{829}}{30}+\frac{4}{15}
\frac{4}{15} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}