Asosiy tarkibga oʻtish
w uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

16w^{2}+4w=80
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
16w^{2}+4w-80=80-80
Tenglamaning ikkala tarafidan 80 ni ayirish.
16w^{2}+4w-80=0
O‘zidan 80 ayirilsa 0 qoladi.
w=\frac{-4±\sqrt{4^{2}-4\times 16\left(-80\right)}}{2\times 16}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 16 ni a, 4 ni b va -80 ni c bilan almashtiring.
w=\frac{-4±\sqrt{16-4\times 16\left(-80\right)}}{2\times 16}
4 kvadratini chiqarish.
w=\frac{-4±\sqrt{16-64\left(-80\right)}}{2\times 16}
-4 ni 16 marotabaga ko'paytirish.
w=\frac{-4±\sqrt{16+5120}}{2\times 16}
-64 ni -80 marotabaga ko'paytirish.
w=\frac{-4±\sqrt{5136}}{2\times 16}
16 ni 5120 ga qo'shish.
w=\frac{-4±4\sqrt{321}}{2\times 16}
5136 ning kvadrat ildizini chiqarish.
w=\frac{-4±4\sqrt{321}}{32}
2 ni 16 marotabaga ko'paytirish.
w=\frac{4\sqrt{321}-4}{32}
w=\frac{-4±4\sqrt{321}}{32} tenglamasini yeching, bunda ± musbat. -4 ni 4\sqrt{321} ga qo'shish.
w=\frac{\sqrt{321}-1}{8}
-4+4\sqrt{321} ni 32 ga bo'lish.
w=\frac{-4\sqrt{321}-4}{32}
w=\frac{-4±4\sqrt{321}}{32} tenglamasini yeching, bunda ± manfiy. -4 dan 4\sqrt{321} ni ayirish.
w=\frac{-\sqrt{321}-1}{8}
-4-4\sqrt{321} ni 32 ga bo'lish.
w=\frac{\sqrt{321}-1}{8} w=\frac{-\sqrt{321}-1}{8}
Tenglama yechildi.
16w^{2}+4w=80
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{16w^{2}+4w}{16}=\frac{80}{16}
Ikki tarafini 16 ga bo‘ling.
w^{2}+\frac{4}{16}w=\frac{80}{16}
16 ga bo'lish 16 ga ko'paytirishni bekor qiladi.
w^{2}+\frac{1}{4}w=\frac{80}{16}
\frac{4}{16} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
w^{2}+\frac{1}{4}w=5
80 ni 16 ga bo'lish.
w^{2}+\frac{1}{4}w+\left(\frac{1}{8}\right)^{2}=5+\left(\frac{1}{8}\right)^{2}
\frac{1}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{8} olish uchun. Keyin, \frac{1}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
w^{2}+\frac{1}{4}w+\frac{1}{64}=5+\frac{1}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{8} kvadratini chiqarish.
w^{2}+\frac{1}{4}w+\frac{1}{64}=\frac{321}{64}
5 ni \frac{1}{64} ga qo'shish.
\left(w+\frac{1}{8}\right)^{2}=\frac{321}{64}
w^{2}+\frac{1}{4}w+\frac{1}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(w+\frac{1}{8}\right)^{2}}=\sqrt{\frac{321}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
w+\frac{1}{8}=\frac{\sqrt{321}}{8} w+\frac{1}{8}=-\frac{\sqrt{321}}{8}
Qisqartirish.
w=\frac{\sqrt{321}-1}{8} w=\frac{-\sqrt{321}-1}{8}
Tenglamaning ikkala tarafidan \frac{1}{8} ni ayirish.