Asosiy tarkibga oʻtish
v uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

v\left(4v-12\right)=0
v omili.
v=0 v=3
Tenglamani yechish uchun v=0 va 4v-12=0 ni yeching.
4v^{2}-12v=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
v=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -12 ni b va 0 ni c bilan almashtiring.
v=\frac{-\left(-12\right)±12}{2\times 4}
\left(-12\right)^{2} ning kvadrat ildizini chiqarish.
v=\frac{12±12}{2\times 4}
-12 ning teskarisi 12 ga teng.
v=\frac{12±12}{8}
2 ni 4 marotabaga ko'paytirish.
v=\frac{24}{8}
v=\frac{12±12}{8} tenglamasini yeching, bunda ± musbat. 12 ni 12 ga qo'shish.
v=3
24 ni 8 ga bo'lish.
v=\frac{0}{8}
v=\frac{12±12}{8} tenglamasini yeching, bunda ± manfiy. 12 dan 12 ni ayirish.
v=0
0 ni 8 ga bo'lish.
v=3 v=0
Tenglama yechildi.
4v^{2}-12v=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4v^{2}-12v}{4}=\frac{0}{4}
Ikki tarafini 4 ga bo‘ling.
v^{2}+\left(-\frac{12}{4}\right)v=\frac{0}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
v^{2}-3v=\frac{0}{4}
-12 ni 4 ga bo'lish.
v^{2}-3v=0
0 ni 4 ga bo'lish.
v^{2}-3v+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
v^{2}-3v+\frac{9}{4}=\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
\left(v-\frac{3}{2}\right)^{2}=\frac{9}{4}
v^{2}-3v+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(v-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
v-\frac{3}{2}=\frac{3}{2} v-\frac{3}{2}=-\frac{3}{2}
Qisqartirish.
v=3 v=0
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.