Omil
4u\left(u+2\right)
Baholash
4u\left(u+2\right)
Baham ko'rish
Klipbordga nusxa olish
4\left(u^{2}+2u\right)
4 omili.
u\left(u+2\right)
Hisoblang: u^{2}+2u. u omili.
4u\left(u+2\right)
Toʻliq ajratilgan ifodani qaytadan yozing.
4u^{2}+8u=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
u=\frac{-8±\sqrt{8^{2}}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
u=\frac{-8±8}{2\times 4}
8^{2} ning kvadrat ildizini chiqarish.
u=\frac{-8±8}{8}
2 ni 4 marotabaga ko'paytirish.
u=\frac{0}{8}
u=\frac{-8±8}{8} tenglamasini yeching, bunda ± musbat. -8 ni 8 ga qo'shish.
u=0
0 ni 8 ga bo'lish.
u=-\frac{16}{8}
u=\frac{-8±8}{8} tenglamasini yeching, bunda ± manfiy. -8 dan 8 ni ayirish.
u=-2
-16 ni 8 ga bo'lish.
4u^{2}+8u=4u\left(u-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 0 ga va x_{2} uchun -2 ga bo‘ling.
4u^{2}+8u=4u\left(u+2\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}