Omil
\left(t-4\right)\left(4t+3\right)
Baholash
\left(t-4\right)\left(4t+3\right)
Baham ko'rish
Klipbordga nusxa olish
a+b=-13 ab=4\left(-12\right)=-48
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 4t^{2}+at+bt-12 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-48 2,-24 3,-16 4,-12 6,-8
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -48-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Har bir juftlik yigʻindisini hisoblang.
a=-16 b=3
Yechim – -13 yigʻindisini beruvchi juftlik.
\left(4t^{2}-16t\right)+\left(3t-12\right)
4t^{2}-13t-12 ni \left(4t^{2}-16t\right)+\left(3t-12\right) sifatida qaytadan yozish.
4t\left(t-4\right)+3\left(t-4\right)
Birinchi guruhda 4t ni va ikkinchi guruhda 3 ni faktordan chiqaring.
\left(t-4\right)\left(4t+3\right)
Distributiv funktsiyasidan foydalangan holda t-4 umumiy terminini chiqaring.
4t^{2}-13t-12=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 4\left(-12\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-13\right)±\sqrt{169-4\times 4\left(-12\right)}}{2\times 4}
-13 kvadratini chiqarish.
t=\frac{-\left(-13\right)±\sqrt{169-16\left(-12\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
t=\frac{-\left(-13\right)±\sqrt{169+192}}{2\times 4}
-16 ni -12 marotabaga ko'paytirish.
t=\frac{-\left(-13\right)±\sqrt{361}}{2\times 4}
169 ni 192 ga qo'shish.
t=\frac{-\left(-13\right)±19}{2\times 4}
361 ning kvadrat ildizini chiqarish.
t=\frac{13±19}{2\times 4}
-13 ning teskarisi 13 ga teng.
t=\frac{13±19}{8}
2 ni 4 marotabaga ko'paytirish.
t=\frac{32}{8}
t=\frac{13±19}{8} tenglamasini yeching, bunda ± musbat. 13 ni 19 ga qo'shish.
t=4
32 ni 8 ga bo'lish.
t=-\frac{6}{8}
t=\frac{13±19}{8} tenglamasini yeching, bunda ± manfiy. 13 dan 19 ni ayirish.
t=-\frac{3}{4}
\frac{-6}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
4t^{2}-13t-12=4\left(t-4\right)\left(t-\left(-\frac{3}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 4 ga va x_{2} uchun -\frac{3}{4} ga bo‘ling.
4t^{2}-13t-12=4\left(t-4\right)\left(t+\frac{3}{4}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
4t^{2}-13t-12=4\left(t-4\right)\times \frac{4t+3}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{4} ni t ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
4t^{2}-13t-12=\left(t-4\right)\left(4t+3\right)
4 va 4 ichida eng katta umumiy 4 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}