t uchun yechish
t = \frac{5}{2} = 2\frac{1}{2} = 2,5
t=0
Baham ko'rish
Klipbordga nusxa olish
t\left(4t-10\right)=0
t omili.
t=0 t=\frac{5}{2}
Tenglamani yechish uchun t=0 va 4t-10=0 ni yeching.
4t^{2}-10t=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -10 ni b va 0 ni c bilan almashtiring.
t=\frac{-\left(-10\right)±10}{2\times 4}
\left(-10\right)^{2} ning kvadrat ildizini chiqarish.
t=\frac{10±10}{2\times 4}
-10 ning teskarisi 10 ga teng.
t=\frac{10±10}{8}
2 ni 4 marotabaga ko'paytirish.
t=\frac{20}{8}
t=\frac{10±10}{8} tenglamasini yeching, bunda ± musbat. 10 ni 10 ga qo'shish.
t=\frac{5}{2}
\frac{20}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t=\frac{0}{8}
t=\frac{10±10}{8} tenglamasini yeching, bunda ± manfiy. 10 dan 10 ni ayirish.
t=0
0 ni 8 ga bo'lish.
t=\frac{5}{2} t=0
Tenglama yechildi.
4t^{2}-10t=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4t^{2}-10t}{4}=\frac{0}{4}
Ikki tarafini 4 ga bo‘ling.
t^{2}+\left(-\frac{10}{4}\right)t=\frac{0}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
t^{2}-\frac{5}{2}t=\frac{0}{4}
\frac{-10}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
t^{2}-\frac{5}{2}t=0
0 ni 4 ga bo'lish.
t^{2}-\frac{5}{2}t+\left(-\frac{5}{4}\right)^{2}=\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{4} olish uchun. Keyin, -\frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
t^{2}-\frac{5}{2}t+\frac{25}{16}=\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{4} kvadratini chiqarish.
\left(t-\frac{5}{4}\right)^{2}=\frac{25}{16}
t^{2}-\frac{5}{2}t+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(t-\frac{5}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
t-\frac{5}{4}=\frac{5}{4} t-\frac{5}{4}=-\frac{5}{4}
Qisqartirish.
t=\frac{5}{2} t=0
\frac{5}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}