Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4t^{2}+16t+9=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
t=\frac{-16±\sqrt{16^{2}-4\times 4\times 9}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
t=\frac{-16±\sqrt{256-4\times 4\times 9}}{2\times 4}
16 kvadratini chiqarish.
t=\frac{-16±\sqrt{256-16\times 9}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
t=\frac{-16±\sqrt{256-144}}{2\times 4}
-16 ni 9 marotabaga ko'paytirish.
t=\frac{-16±\sqrt{112}}{2\times 4}
256 ni -144 ga qo'shish.
t=\frac{-16±4\sqrt{7}}{2\times 4}
112 ning kvadrat ildizini chiqarish.
t=\frac{-16±4\sqrt{7}}{8}
2 ni 4 marotabaga ko'paytirish.
t=\frac{4\sqrt{7}-16}{8}
t=\frac{-16±4\sqrt{7}}{8} tenglamasini yeching, bunda ± musbat. -16 ni 4\sqrt{7} ga qo'shish.
t=\frac{\sqrt{7}}{2}-2
-16+4\sqrt{7} ni 8 ga bo'lish.
t=\frac{-4\sqrt{7}-16}{8}
t=\frac{-16±4\sqrt{7}}{8} tenglamasini yeching, bunda ± manfiy. -16 dan 4\sqrt{7} ni ayirish.
t=-\frac{\sqrt{7}}{2}-2
-16-4\sqrt{7} ni 8 ga bo'lish.
4t^{2}+16t+9=4\left(t-\left(\frac{\sqrt{7}}{2}-2\right)\right)\left(t-\left(-\frac{\sqrt{7}}{2}-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -2+\frac{\sqrt{7}}{2} ga va x_{2} uchun -2-\frac{\sqrt{7}}{2} ga bo‘ling.