Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4n^{2}-n-812=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
n=\frac{-\left(-1\right)±\sqrt{1-4\times 4\left(-812\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
n=\frac{-\left(-1\right)±\sqrt{1-16\left(-812\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{1+12992}}{2\times 4}
-16 ni -812 marotabaga ko'paytirish.
n=\frac{-\left(-1\right)±\sqrt{12993}}{2\times 4}
1 ni 12992 ga qo'shish.
n=\frac{1±\sqrt{12993}}{2\times 4}
-1 ning teskarisi 1 ga teng.
n=\frac{1±\sqrt{12993}}{8}
2 ni 4 marotabaga ko'paytirish.
n=\frac{\sqrt{12993}+1}{8}
n=\frac{1±\sqrt{12993}}{8} tenglamasini yeching, bunda ± musbat. 1 ni \sqrt{12993} ga qo'shish.
n=\frac{1-\sqrt{12993}}{8}
n=\frac{1±\sqrt{12993}}{8} tenglamasini yeching, bunda ± manfiy. 1 dan \sqrt{12993} ni ayirish.
4n^{2}-n-812=4\left(n-\frac{\sqrt{12993}+1}{8}\right)\left(n-\frac{1-\sqrt{12993}}{8}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1+\sqrt{12993}}{8} ga va x_{2} uchun \frac{1-\sqrt{12993}}{8} ga bo‘ling.