m uchun yechish
m = \frac{\sqrt{89} + 5}{8} \approx 1,804247642
m=\frac{5-\sqrt{89}}{8}\approx -0,554247642
Baham ko'rish
Klipbordga nusxa olish
4m^{2}-5m-4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\left(-4\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -5 ni b va -4 ni c bilan almashtiring.
m=\frac{-\left(-5\right)±\sqrt{25-4\times 4\left(-4\right)}}{2\times 4}
-5 kvadratini chiqarish.
m=\frac{-\left(-5\right)±\sqrt{25-16\left(-4\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
m=\frac{-\left(-5\right)±\sqrt{25+64}}{2\times 4}
-16 ni -4 marotabaga ko'paytirish.
m=\frac{-\left(-5\right)±\sqrt{89}}{2\times 4}
25 ni 64 ga qo'shish.
m=\frac{5±\sqrt{89}}{2\times 4}
-5 ning teskarisi 5 ga teng.
m=\frac{5±\sqrt{89}}{8}
2 ni 4 marotabaga ko'paytirish.
m=\frac{\sqrt{89}+5}{8}
m=\frac{5±\sqrt{89}}{8} tenglamasini yeching, bunda ± musbat. 5 ni \sqrt{89} ga qo'shish.
m=\frac{5-\sqrt{89}}{8}
m=\frac{5±\sqrt{89}}{8} tenglamasini yeching, bunda ± manfiy. 5 dan \sqrt{89} ni ayirish.
m=\frac{\sqrt{89}+5}{8} m=\frac{5-\sqrt{89}}{8}
Tenglama yechildi.
4m^{2}-5m-4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4m^{2}-5m-4-\left(-4\right)=-\left(-4\right)
4 ni tenglamaning ikkala tarafiga qo'shish.
4m^{2}-5m=-\left(-4\right)
O‘zidan -4 ayirilsa 0 qoladi.
4m^{2}-5m=4
0 dan -4 ni ayirish.
\frac{4m^{2}-5m}{4}=\frac{4}{4}
Ikki tarafini 4 ga bo‘ling.
m^{2}-\frac{5}{4}m=\frac{4}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
m^{2}-\frac{5}{4}m=1
4 ni 4 ga bo'lish.
m^{2}-\frac{5}{4}m+\left(-\frac{5}{8}\right)^{2}=1+\left(-\frac{5}{8}\right)^{2}
-\frac{5}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{8} olish uchun. Keyin, -\frac{5}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-\frac{5}{4}m+\frac{25}{64}=1+\frac{25}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{8} kvadratini chiqarish.
m^{2}-\frac{5}{4}m+\frac{25}{64}=\frac{89}{64}
1 ni \frac{25}{64} ga qo'shish.
\left(m-\frac{5}{8}\right)^{2}=\frac{89}{64}
m^{2}-\frac{5}{4}m+\frac{25}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-\frac{5}{8}\right)^{2}}=\sqrt{\frac{89}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-\frac{5}{8}=\frac{\sqrt{89}}{8} m-\frac{5}{8}=-\frac{\sqrt{89}}{8}
Qisqartirish.
m=\frac{\sqrt{89}+5}{8} m=\frac{5-\sqrt{89}}{8}
\frac{5}{8} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}