m uchun yechish
m = \frac{\sqrt{55} + 9}{2} \approx 8,208099244
m=\frac{9-\sqrt{55}}{2}\approx 0,791900756
Baham ko'rish
Klipbordga nusxa olish
4m^{2}-36m+26=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
m=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 4\times 26}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -36 ni b va 26 ni c bilan almashtiring.
m=\frac{-\left(-36\right)±\sqrt{1296-4\times 4\times 26}}{2\times 4}
-36 kvadratini chiqarish.
m=\frac{-\left(-36\right)±\sqrt{1296-16\times 26}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
m=\frac{-\left(-36\right)±\sqrt{1296-416}}{2\times 4}
-16 ni 26 marotabaga ko'paytirish.
m=\frac{-\left(-36\right)±\sqrt{880}}{2\times 4}
1296 ni -416 ga qo'shish.
m=\frac{-\left(-36\right)±4\sqrt{55}}{2\times 4}
880 ning kvadrat ildizini chiqarish.
m=\frac{36±4\sqrt{55}}{2\times 4}
-36 ning teskarisi 36 ga teng.
m=\frac{36±4\sqrt{55}}{8}
2 ni 4 marotabaga ko'paytirish.
m=\frac{4\sqrt{55}+36}{8}
m=\frac{36±4\sqrt{55}}{8} tenglamasini yeching, bunda ± musbat. 36 ni 4\sqrt{55} ga qo'shish.
m=\frac{\sqrt{55}+9}{2}
36+4\sqrt{55} ni 8 ga bo'lish.
m=\frac{36-4\sqrt{55}}{8}
m=\frac{36±4\sqrt{55}}{8} tenglamasini yeching, bunda ± manfiy. 36 dan 4\sqrt{55} ni ayirish.
m=\frac{9-\sqrt{55}}{2}
36-4\sqrt{55} ni 8 ga bo'lish.
m=\frac{\sqrt{55}+9}{2} m=\frac{9-\sqrt{55}}{2}
Tenglama yechildi.
4m^{2}-36m+26=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4m^{2}-36m+26-26=-26
Tenglamaning ikkala tarafidan 26 ni ayirish.
4m^{2}-36m=-26
O‘zidan 26 ayirilsa 0 qoladi.
\frac{4m^{2}-36m}{4}=-\frac{26}{4}
Ikki tarafini 4 ga bo‘ling.
m^{2}+\left(-\frac{36}{4}\right)m=-\frac{26}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
m^{2}-9m=-\frac{26}{4}
-36 ni 4 ga bo'lish.
m^{2}-9m=-\frac{13}{2}
\frac{-26}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
m^{2}-9m+\left(-\frac{9}{2}\right)^{2}=-\frac{13}{2}+\left(-\frac{9}{2}\right)^{2}
-9 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{2} olish uchun. Keyin, -\frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-9m+\frac{81}{4}=-\frac{13}{2}+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{2} kvadratini chiqarish.
m^{2}-9m+\frac{81}{4}=\frac{55}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{13}{2} ni \frac{81}{4} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(m-\frac{9}{2}\right)^{2}=\frac{55}{4}
m^{2}-9m+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-\frac{9}{2}\right)^{2}}=\sqrt{\frac{55}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-\frac{9}{2}=\frac{\sqrt{55}}{2} m-\frac{9}{2}=-\frac{\sqrt{55}}{2}
Qisqartirish.
m=\frac{\sqrt{55}+9}{2} m=\frac{9-\sqrt{55}}{2}
\frac{9}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}