Asosiy tarkibga oʻtish
k uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(2k-3\right)\left(2k+3\right)=0
Hisoblang: 4k^{2}-9. 4k^{2}-9 ni \left(2k\right)^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=\frac{3}{2} k=-\frac{3}{2}
Tenglamani yechish uchun 2k-3=0 va 2k+3=0 ni yeching.
4k^{2}=9
9 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
k^{2}=\frac{9}{4}
Ikki tarafini 4 ga bo‘ling.
k=\frac{3}{2} k=-\frac{3}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4k^{2}-9=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 4\left(-9\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -9 ni c bilan almashtiring.
k=\frac{0±\sqrt{-4\times 4\left(-9\right)}}{2\times 4}
0 kvadratini chiqarish.
k=\frac{0±\sqrt{-16\left(-9\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
k=\frac{0±\sqrt{144}}{2\times 4}
-16 ni -9 marotabaga ko'paytirish.
k=\frac{0±12}{2\times 4}
144 ning kvadrat ildizini chiqarish.
k=\frac{0±12}{8}
2 ni 4 marotabaga ko'paytirish.
k=\frac{3}{2}
k=\frac{0±12}{8} tenglamasini yeching, bunda ± musbat. \frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
k=-\frac{3}{2}
k=\frac{0±12}{8} tenglamasini yeching, bunda ± manfiy. \frac{-12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
k=\frac{3}{2} k=-\frac{3}{2}
Tenglama yechildi.