k uchun yechish
k = \frac{3}{2} = 1\frac{1}{2} = 1,5
k = -\frac{3}{2} = -1\frac{1}{2} = -1,5
Viktorina
Polynomial
4 k ^ { 2 } - 9 = 0
Baham ko'rish
Klipbordga nusxa olish
\left(2k-3\right)\left(2k+3\right)=0
Hisoblang: 4k^{2}-9. 4k^{2}-9 ni \left(2k\right)^{2}-3^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
k=\frac{3}{2} k=-\frac{3}{2}
Tenglamani yechish uchun 2k-3=0 va 2k+3=0 ni yeching.
4k^{2}=9
9 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
k^{2}=\frac{9}{4}
Ikki tarafini 4 ga bo‘ling.
k=\frac{3}{2} k=-\frac{3}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4k^{2}-9=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\times 4\left(-9\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -9 ni c bilan almashtiring.
k=\frac{0±\sqrt{-4\times 4\left(-9\right)}}{2\times 4}
0 kvadratini chiqarish.
k=\frac{0±\sqrt{-16\left(-9\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
k=\frac{0±\sqrt{144}}{2\times 4}
-16 ni -9 marotabaga ko'paytirish.
k=\frac{0±12}{2\times 4}
144 ning kvadrat ildizini chiqarish.
k=\frac{0±12}{8}
2 ni 4 marotabaga ko'paytirish.
k=\frac{3}{2}
k=\frac{0±12}{8} tenglamasini yeching, bunda ± musbat. \frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
k=-\frac{3}{2}
k=\frac{0±12}{8} tenglamasini yeching, bunda ± manfiy. \frac{-12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
k=\frac{3}{2} k=-\frac{3}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}