Asosiy tarkibga oʻtish
b uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(2b-11\right)\left(2b+11\right)=0
Hisoblang: 4b^{2}-121. 4b^{2}-121 ni \left(2b\right)^{2}-11^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
b=\frac{11}{2} b=-\frac{11}{2}
Tenglamani yechish uchun 2b-11=0 va 2b+11=0 ni yeching.
4b^{2}=121
121 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
b^{2}=\frac{121}{4}
Ikki tarafini 4 ga bo‘ling.
b=\frac{11}{2} b=-\frac{11}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4b^{2}-121=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
b=\frac{0±\sqrt{0^{2}-4\times 4\left(-121\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -121 ni c bilan almashtiring.
b=\frac{0±\sqrt{-4\times 4\left(-121\right)}}{2\times 4}
0 kvadratini chiqarish.
b=\frac{0±\sqrt{-16\left(-121\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
b=\frac{0±\sqrt{1936}}{2\times 4}
-16 ni -121 marotabaga ko'paytirish.
b=\frac{0±44}{2\times 4}
1936 ning kvadrat ildizini chiqarish.
b=\frac{0±44}{8}
2 ni 4 marotabaga ko'paytirish.
b=\frac{11}{2}
b=\frac{0±44}{8} tenglamasini yeching, bunda ± musbat. \frac{44}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=-\frac{11}{2}
b=\frac{0±44}{8} tenglamasini yeching, bunda ± manfiy. \frac{-44}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
b=\frac{11}{2} b=-\frac{11}{2}
Tenglama yechildi.