Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4a^{2}-4a-1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
a=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-1\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-1\right)}}{2\times 4}
-4 kvadratini chiqarish.
a=\frac{-\left(-4\right)±\sqrt{16-16\left(-1\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
a=\frac{-\left(-4\right)±\sqrt{16+16}}{2\times 4}
-16 ni -1 marotabaga ko'paytirish.
a=\frac{-\left(-4\right)±\sqrt{32}}{2\times 4}
16 ni 16 ga qo'shish.
a=\frac{-\left(-4\right)±4\sqrt{2}}{2\times 4}
32 ning kvadrat ildizini chiqarish.
a=\frac{4±4\sqrt{2}}{2\times 4}
-4 ning teskarisi 4 ga teng.
a=\frac{4±4\sqrt{2}}{8}
2 ni 4 marotabaga ko'paytirish.
a=\frac{4\sqrt{2}+4}{8}
a=\frac{4±4\sqrt{2}}{8} tenglamasini yeching, bunda ± musbat. 4 ni 4\sqrt{2} ga qo'shish.
a=\frac{\sqrt{2}+1}{2}
4+4\sqrt{2} ni 8 ga bo'lish.
a=\frac{4-4\sqrt{2}}{8}
a=\frac{4±4\sqrt{2}}{8} tenglamasini yeching, bunda ± manfiy. 4 dan 4\sqrt{2} ni ayirish.
a=\frac{1-\sqrt{2}}{2}
4-4\sqrt{2} ni 8 ga bo'lish.
4a^{2}-4a-1=4\left(a-\frac{\sqrt{2}+1}{2}\right)\left(a-\frac{1-\sqrt{2}}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{1+\sqrt{2}}{2} ga va x_{2} uchun \frac{1-\sqrt{2}}{2} ga bo‘ling.