Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4a^{2}+102a-224=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
a=\frac{-102±\sqrt{102^{2}-4\times 4\left(-224\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 102 ni b va -224 ni c bilan almashtiring.
a=\frac{-102±\sqrt{10404-4\times 4\left(-224\right)}}{2\times 4}
102 kvadratini chiqarish.
a=\frac{-102±\sqrt{10404-16\left(-224\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
a=\frac{-102±\sqrt{10404+3584}}{2\times 4}
-16 ni -224 marotabaga ko'paytirish.
a=\frac{-102±\sqrt{13988}}{2\times 4}
10404 ni 3584 ga qo'shish.
a=\frac{-102±2\sqrt{3497}}{2\times 4}
13988 ning kvadrat ildizini chiqarish.
a=\frac{-102±2\sqrt{3497}}{8}
2 ni 4 marotabaga ko'paytirish.
a=\frac{2\sqrt{3497}-102}{8}
a=\frac{-102±2\sqrt{3497}}{8} tenglamasini yeching, bunda ± musbat. -102 ni 2\sqrt{3497} ga qo'shish.
a=\frac{\sqrt{3497}-51}{4}
-102+2\sqrt{3497} ni 8 ga bo'lish.
a=\frac{-2\sqrt{3497}-102}{8}
a=\frac{-102±2\sqrt{3497}}{8} tenglamasini yeching, bunda ± manfiy. -102 dan 2\sqrt{3497} ni ayirish.
a=\frac{-\sqrt{3497}-51}{4}
-102-2\sqrt{3497} ni 8 ga bo'lish.
a=\frac{\sqrt{3497}-51}{4} a=\frac{-\sqrt{3497}-51}{4}
Tenglama yechildi.
4a^{2}+102a-224=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4a^{2}+102a-224-\left(-224\right)=-\left(-224\right)
224 ni tenglamaning ikkala tarafiga qo'shish.
4a^{2}+102a=-\left(-224\right)
O‘zidan -224 ayirilsa 0 qoladi.
4a^{2}+102a=224
0 dan -224 ni ayirish.
\frac{4a^{2}+102a}{4}=\frac{224}{4}
Ikki tarafini 4 ga bo‘ling.
a^{2}+\frac{102}{4}a=\frac{224}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
a^{2}+\frac{51}{2}a=\frac{224}{4}
\frac{102}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
a^{2}+\frac{51}{2}a=56
224 ni 4 ga bo'lish.
a^{2}+\frac{51}{2}a+\left(\frac{51}{4}\right)^{2}=56+\left(\frac{51}{4}\right)^{2}
\frac{51}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{51}{4} olish uchun. Keyin, \frac{51}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
a^{2}+\frac{51}{2}a+\frac{2601}{16}=56+\frac{2601}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{51}{4} kvadratini chiqarish.
a^{2}+\frac{51}{2}a+\frac{2601}{16}=\frac{3497}{16}
56 ni \frac{2601}{16} ga qo'shish.
\left(a+\frac{51}{4}\right)^{2}=\frac{3497}{16}
a^{2}+\frac{51}{2}a+\frac{2601}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(a+\frac{51}{4}\right)^{2}}=\sqrt{\frac{3497}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
a+\frac{51}{4}=\frac{\sqrt{3497}}{4} a+\frac{51}{4}=-\frac{\sqrt{3497}}{4}
Qisqartirish.
a=\frac{\sqrt{3497}-51}{4} a=\frac{-\sqrt{3497}-51}{4}
Tenglamaning ikkala tarafidan \frac{51}{4} ni ayirish.