Baholash
-\frac{6a^{\frac{4}{3}}}{b^{2}}
a ga nisbatan hosilani topish
-\frac{8\sqrt[3]{a}}{b^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{4a^{\frac{2}{3}}b^{-1}}{-\frac{2}{3}a^{-\frac{2}{3}}b^{\frac{3}{3}}}
1 ni olish uchun 3 ni 3 ga bo‘ling.
\frac{4a^{\frac{2}{3}}b^{-1}}{-\frac{2}{3}a^{-\frac{2}{3}}b^{1}}
1 ni olish uchun 3 ni 3 ga bo‘ling.
\frac{4b^{-1}a^{\frac{4}{3}}}{-\frac{2}{3}b^{1}}
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{4b^{-1}a^{\frac{4}{3}}}{-\frac{2}{3}b}
1 daraja ko‘rsatkichini b ga hisoblang va b ni qiymatni oling.
\frac{4a^{\frac{4}{3}}}{-\frac{2}{3}b^{2}}
Ayni asosning daraja ko‘rsatkichini bo‘lish uchun suratning darajasini maxraj darajasiga bo‘ling.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{4}{b\left(-\frac{2b^{1}}{3}\right)}a^{\frac{2}{3}-\left(-\frac{2}{3}\right)})
Ayni asosning daraja ko'rsatkichi bo'lish uchun maxrajning darajasini surat darajasidan bo'ling.
\frac{\mathrm{d}}{\mathrm{d}a}(\left(-\frac{6}{b^{2}}\right)a^{\frac{4}{3}})
Arifmetik hisobni amalga oshirish.
\frac{4}{3}\left(-\frac{6}{b^{2}}\right)a^{\frac{4}{3}-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\left(-\frac{8}{b^{2}}\right)\sqrt[3]{a}
Arifmetik hisobni amalga oshirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}