x uchun yechish (complex solution)
x=\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx 2,716341211i
x=-\frac{i\sqrt{6\sqrt{31}+33}}{3}\approx -0-2,716341211i
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0,212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0,212547035
x uchun yechish
x=-\frac{\sqrt{6\sqrt{31}-33}}{3}\approx -0,212547035
x=\frac{\sqrt{6\sqrt{31}-33}}{3}\approx 0,212547035
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
4 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
4x^{2}+4 ga 2x^{2}+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x^{2}-1\right)^{2} kengaytirilishi uchun ishlating.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
5 ga x^{4}-2x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Ikkala tarafdan 5x^{4} ni ayirish.
3x^{4}+12x^{2}+4=-10x^{2}+5
3x^{4} ni olish uchun 8x^{4} va -5x^{4} ni birlashtirish.
3x^{4}+12x^{2}+4+10x^{2}=5
10x^{2} ni ikki tarafga qo’shing.
3x^{4}+22x^{2}+4=5
22x^{2} ni olish uchun 12x^{2} va 10x^{2} ni birlashtirish.
3x^{4}+22x^{2}+4-5=0
Ikkala tarafdan 5 ni ayirish.
3x^{4}+22x^{2}-1=0
-1 olish uchun 4 dan 5 ni ayirish.
3t^{2}+22t-1=0
x^{2} uchun t ni almashtiring.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 3 ni, b uchun 22 ni va c uchun -1 ni ayiring.
t=\frac{-22±4\sqrt{31}}{6}
Hisoblarni amalga oshiring.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
t=\frac{-22±4\sqrt{31}}{6} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-\sqrt{\frac{2\sqrt{31}-11}{3}} x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-i\sqrt{\frac{2\sqrt{31}+11}{3}} x=i\sqrt{\frac{2\sqrt{31}+11}{3}}
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
4 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
4x^{2}+4 ga 2x^{2}+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x^{2}-1\right)^{2} kengaytirilishi uchun ishlating.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
5 ga x^{4}-2x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Ikkala tarafdan 5x^{4} ni ayirish.
3x^{4}+12x^{2}+4=-10x^{2}+5
3x^{4} ni olish uchun 8x^{4} va -5x^{4} ni birlashtirish.
3x^{4}+12x^{2}+4+10x^{2}=5
10x^{2} ni ikki tarafga qo’shing.
3x^{4}+22x^{2}+4=5
22x^{2} ni olish uchun 12x^{2} va 10x^{2} ni birlashtirish.
3x^{4}+22x^{2}+4-5=0
Ikkala tarafdan 5 ni ayirish.
3x^{4}+22x^{2}-1=0
-1 olish uchun 4 dan 5 ni ayirish.
3t^{2}+22t-1=0
x^{2} uchun t ni almashtiring.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 3 ni, b uchun 22 ni va c uchun -1 ni ayiring.
t=\frac{-22±4\sqrt{31}}{6}
Hisoblarni amalga oshiring.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
t=\frac{-22±4\sqrt{31}}{6} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-\sqrt{\frac{2\sqrt{31}-11}{3}}
x=t^{2} boʻlganda, yechimlar musbat t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}