Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
4 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
4x^{2}+4 ga 2x^{2}+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x^{2}-1\right)^{2} kengaytirilishi uchun ishlating.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
5 ga x^{4}-2x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Ikkala tarafdan 5x^{4} ni ayirish.
3x^{4}+12x^{2}+4=-10x^{2}+5
3x^{4} ni olish uchun 8x^{4} va -5x^{4} ni birlashtirish.
3x^{4}+12x^{2}+4+10x^{2}=5
10x^{2} ni ikki tarafga qo’shing.
3x^{4}+22x^{2}+4=5
22x^{2} ni olish uchun 12x^{2} va 10x^{2} ni birlashtirish.
3x^{4}+22x^{2}+4-5=0
Ikkala tarafdan 5 ni ayirish.
3x^{4}+22x^{2}-1=0
-1 olish uchun 4 dan 5 ni ayirish.
3t^{2}+22t-1=0
x^{2} uchun t ni almashtiring.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 3 ni, b uchun 22 ni va c uchun -1 ni ayiring.
t=\frac{-22±4\sqrt{31}}{6}
Hisoblarni amalga oshiring.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
t=\frac{-22±4\sqrt{31}}{6} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=-\sqrt{\frac{2\sqrt{31}-11}{3}} x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-i\sqrt{\frac{2\sqrt{31}+11}{3}} x=i\sqrt{\frac{2\sqrt{31}+11}{3}}
x=t^{2} boʻlganda, yechimlar har bir t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
4 ga x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
4x^{2}+4 ga 2x^{2}+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x^{2}-1\right)^{2} kengaytirilishi uchun ishlating.
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
5 ga x^{4}-2x^{2}+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
Ikkala tarafdan 5x^{4} ni ayirish.
3x^{4}+12x^{2}+4=-10x^{2}+5
3x^{4} ni olish uchun 8x^{4} va -5x^{4} ni birlashtirish.
3x^{4}+12x^{2}+4+10x^{2}=5
10x^{2} ni ikki tarafga qo’shing.
3x^{4}+22x^{2}+4=5
22x^{2} ni olish uchun 12x^{2} va 10x^{2} ni birlashtirish.
3x^{4}+22x^{2}+4-5=0
Ikkala tarafdan 5 ni ayirish.
3x^{4}+22x^{2}-1=0
-1 olish uchun 4 dan 5 ni ayirish.
3t^{2}+22t-1=0
x^{2} uchun t ni almashtiring.
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni bu formula bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat tenglamada a uchun 3 ni, b uchun 22 ni va c uchun -1 ni ayiring.
t=\frac{-22±4\sqrt{31}}{6}
Hisoblarni amalga oshiring.
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
t=\frac{-22±4\sqrt{31}}{6} tenglamasini ± plus va ± minus boʻlgan holatida ishlang.
x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-\sqrt{\frac{2\sqrt{31}-11}{3}}
x=t^{2} boʻlganda, yechimlar musbat t uchun x=±\sqrt{t} hisoblanishi orqali olinadi.