Baholash
\frac{2a\left(5a-16\right)}{5}
Kengaytirish
2a^{2}-\frac{32a}{5}
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{2}a^{2}-6a-\frac{5}{2}\left(\frac{4}{25}a-\frac{1}{5}a^{2}\right)
4 ga \frac{3}{8}a^{2}-\frac{3}{2}a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{2}a^{2}-6a-\frac{2}{5}a+\frac{1}{2}a^{2}
-\frac{5}{2} ga \frac{4}{25}a-\frac{1}{5}a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{2}a^{2}-\frac{32}{5}a+\frac{1}{2}a^{2}
-\frac{32}{5}a ni olish uchun -6a va -\frac{2}{5}a ni birlashtirish.
2a^{2}-\frac{32}{5}a
2a^{2} ni olish uchun \frac{3}{2}a^{2} va \frac{1}{2}a^{2} ni birlashtirish.
\frac{3}{2}a^{2}-6a-\frac{5}{2}\left(\frac{4}{25}a-\frac{1}{5}a^{2}\right)
4 ga \frac{3}{8}a^{2}-\frac{3}{2}a ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{2}a^{2}-6a-\frac{2}{5}a+\frac{1}{2}a^{2}
-\frac{5}{2} ga \frac{4}{25}a-\frac{1}{5}a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{3}{2}a^{2}-\frac{32}{5}a+\frac{1}{2}a^{2}
-\frac{32}{5}a ni olish uchun -6a va -\frac{2}{5}a ni birlashtirish.
2a^{2}-\frac{32}{5}a
2a^{2} ni olish uchun \frac{3}{2}a^{2} va \frac{1}{2}a^{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}