z uchun yechish
z=5\sqrt{22}-20\approx 3,452078799
z=-5\sqrt{22}-20\approx -43,452078799
Baham ko'rish
Klipbordga nusxa olish
4z^{2}+160z=600
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
4z^{2}+160z-600=600-600
Tenglamaning ikkala tarafidan 600 ni ayirish.
4z^{2}+160z-600=0
O‘zidan 600 ayirilsa 0 qoladi.
z=\frac{-160±\sqrt{160^{2}-4\times 4\left(-600\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 160 ni b va -600 ni c bilan almashtiring.
z=\frac{-160±\sqrt{25600-4\times 4\left(-600\right)}}{2\times 4}
160 kvadratini chiqarish.
z=\frac{-160±\sqrt{25600-16\left(-600\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
z=\frac{-160±\sqrt{25600+9600}}{2\times 4}
-16 ni -600 marotabaga ko'paytirish.
z=\frac{-160±\sqrt{35200}}{2\times 4}
25600 ni 9600 ga qo'shish.
z=\frac{-160±40\sqrt{22}}{2\times 4}
35200 ning kvadrat ildizini chiqarish.
z=\frac{-160±40\sqrt{22}}{8}
2 ni 4 marotabaga ko'paytirish.
z=\frac{40\sqrt{22}-160}{8}
z=\frac{-160±40\sqrt{22}}{8} tenglamasini yeching, bunda ± musbat. -160 ni 40\sqrt{22} ga qo'shish.
z=5\sqrt{22}-20
-160+40\sqrt{22} ni 8 ga bo'lish.
z=\frac{-40\sqrt{22}-160}{8}
z=\frac{-160±40\sqrt{22}}{8} tenglamasini yeching, bunda ± manfiy. -160 dan 40\sqrt{22} ni ayirish.
z=-5\sqrt{22}-20
-160-40\sqrt{22} ni 8 ga bo'lish.
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
Tenglama yechildi.
4z^{2}+160z=600
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{4z^{2}+160z}{4}=\frac{600}{4}
Ikki tarafini 4 ga bo‘ling.
z^{2}+\frac{160}{4}z=\frac{600}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
z^{2}+40z=\frac{600}{4}
160 ni 4 ga bo'lish.
z^{2}+40z=150
600 ni 4 ga bo'lish.
z^{2}+40z+20^{2}=150+20^{2}
40 ni bo‘lish, x shartining koeffitsienti, 2 ga 20 olish uchun. Keyin, 20 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}+40z+400=150+400
20 kvadratini chiqarish.
z^{2}+40z+400=550
150 ni 400 ga qo'shish.
\left(z+20\right)^{2}=550
z^{2}+40z+400 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+20\right)^{2}}=\sqrt{550}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+20=5\sqrt{22} z+20=-5\sqrt{22}
Qisqartirish.
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
Tenglamaning ikkala tarafidan 20 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}