Omil
\left(x-2\right)\left(4x+1\right)
Baholash
\left(x-2\right)\left(4x+1\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
a+b=-7 ab=4\left(-2\right)=-8
Ifodani guruhlash orqali faktorlang. Avvalo, ifoda 4x^{2}+ax+bx-2 sifatida qayta yozilishi kerak. a va b ni topish uchun yechiladigan tizimni sozlang.
1,-8 2,-4
ab manfiy boʻlganda, a va b da qarama-qarshi belgilar bor. a+b manfiy boʻlganda, manfiy sonda musbatga nisbatdan kattaroq mutlaq qiymat bor. -8-mahsulotni beruvchi bunday butun juftliklarni roʻyxat qiling.
1-8=-7 2-4=-2
Har bir juftlik yigʻindisini hisoblang.
a=-8 b=1
Yechim – -7 yigʻindisini beruvchi juftlik.
\left(4x^{2}-8x\right)+\left(x-2\right)
4x^{2}-7x-2 ni \left(4x^{2}-8x\right)+\left(x-2\right) sifatida qaytadan yozish.
4x\left(x-2\right)+x-2
4x^{2}-8x ichida 4x ni ajrating.
\left(x-2\right)\left(4x+1\right)
Distributiv funktsiyasidan foydalangan holda x-2 umumiy terminini chiqaring.
4x^{2}-7x-2=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 4\left(-2\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 4\left(-2\right)}}{2\times 4}
-7 kvadratini chiqarish.
x=\frac{-\left(-7\right)±\sqrt{49-16\left(-2\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{49+32}}{2\times 4}
-16 ni -2 marotabaga ko'paytirish.
x=\frac{-\left(-7\right)±\sqrt{81}}{2\times 4}
49 ni 32 ga qo'shish.
x=\frac{-\left(-7\right)±9}{2\times 4}
81 ning kvadrat ildizini chiqarish.
x=\frac{7±9}{2\times 4}
-7 ning teskarisi 7 ga teng.
x=\frac{7±9}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{16}{8}
x=\frac{7±9}{8} tenglamasini yeching, bunda ± musbat. 7 ni 9 ga qo'shish.
x=2
16 ni 8 ga bo'lish.
x=-\frac{2}{8}
x=\frac{7±9}{8} tenglamasini yeching, bunda ± manfiy. 7 dan 9 ni ayirish.
x=-\frac{1}{4}
\frac{-2}{8} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
4x^{2}-7x-2=4\left(x-2\right)\left(x-\left(-\frac{1}{4}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 2 ga va x_{2} uchun -\frac{1}{4} ga bo‘ling.
4x^{2}-7x-2=4\left(x-2\right)\left(x+\frac{1}{4}\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.
4x^{2}-7x-2=4\left(x-2\right)\times \frac{4x+1}{4}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{1}{4} ni x ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
4x^{2}-7x-2=\left(x-2\right)\left(4x+1\right)
4 va 4 ichida eng katta umumiy 4 faktorini bekor qiling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}