Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-4x-16=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\left(-16\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, -4 ni b va -16 ni c bilan almashtiring.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4\left(-16\right)}}{2\times 4}
-4 kvadratini chiqarish.
x=\frac{-\left(-4\right)±\sqrt{16-16\left(-16\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{16+256}}{2\times 4}
-16 ni -16 marotabaga ko'paytirish.
x=\frac{-\left(-4\right)±\sqrt{272}}{2\times 4}
16 ni 256 ga qo'shish.
x=\frac{-\left(-4\right)±4\sqrt{17}}{2\times 4}
272 ning kvadrat ildizini chiqarish.
x=\frac{4±4\sqrt{17}}{2\times 4}
-4 ning teskarisi 4 ga teng.
x=\frac{4±4\sqrt{17}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{4\sqrt{17}+4}{8}
x=\frac{4±4\sqrt{17}}{8} tenglamasini yeching, bunda ± musbat. 4 ni 4\sqrt{17} ga qo'shish.
x=\frac{\sqrt{17}+1}{2}
4+4\sqrt{17} ni 8 ga bo'lish.
x=\frac{4-4\sqrt{17}}{8}
x=\frac{4±4\sqrt{17}}{8} tenglamasini yeching, bunda ± manfiy. 4 dan 4\sqrt{17} ni ayirish.
x=\frac{1-\sqrt{17}}{2}
4-4\sqrt{17} ni 8 ga bo'lish.
x=\frac{\sqrt{17}+1}{2} x=\frac{1-\sqrt{17}}{2}
Tenglama yechildi.
4x^{2}-4x-16=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}-4x-16-\left(-16\right)=-\left(-16\right)
16 ni tenglamaning ikkala tarafiga qo'shish.
4x^{2}-4x=-\left(-16\right)
O‘zidan -16 ayirilsa 0 qoladi.
4x^{2}-4x=16
0 dan -16 ni ayirish.
\frac{4x^{2}-4x}{4}=\frac{16}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\left(-\frac{4}{4}\right)x=\frac{16}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}-x=\frac{16}{4}
-4 ni 4 ga bo'lish.
x^{2}-x=4
16 ni 4 ga bo'lish.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=4+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-x+\frac{1}{4}=4+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
x^{2}-x+\frac{1}{4}=\frac{17}{4}
4 ni \frac{1}{4} ga qo'shish.
\left(x-\frac{1}{2}\right)^{2}=\frac{17}{4}
x^{2}-x+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{1}{2}=\frac{\sqrt{17}}{2} x-\frac{1}{2}=-\frac{\sqrt{17}}{2}
Qisqartirish.
x=\frac{\sqrt{17}+1}{2} x=\frac{1-\sqrt{17}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.