Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}-20x+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 5}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 5}}{2\times 4}
-20 kvadratini chiqarish.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 5}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{400-80}}{2\times 4}
-16 ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-20\right)±\sqrt{320}}{2\times 4}
400 ni -80 ga qo'shish.
x=\frac{-\left(-20\right)±8\sqrt{5}}{2\times 4}
320 ning kvadrat ildizini chiqarish.
x=\frac{20±8\sqrt{5}}{2\times 4}
-20 ning teskarisi 20 ga teng.
x=\frac{20±8\sqrt{5}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{8\sqrt{5}+20}{8}
x=\frac{20±8\sqrt{5}}{8} tenglamasini yeching, bunda ± musbat. 20 ni 8\sqrt{5} ga qo'shish.
x=\sqrt{5}+\frac{5}{2}
20+8\sqrt{5} ni 8 ga bo'lish.
x=\frac{20-8\sqrt{5}}{8}
x=\frac{20±8\sqrt{5}}{8} tenglamasini yeching, bunda ± manfiy. 20 dan 8\sqrt{5} ni ayirish.
x=\frac{5}{2}-\sqrt{5}
20-8\sqrt{5} ni 8 ga bo'lish.
4x^{2}-20x+5=4\left(x-\left(\sqrt{5}+\frac{5}{2}\right)\right)\left(x-\left(\frac{5}{2}-\sqrt{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{5}{2}+\sqrt{5} ga va x_{2} uchun \frac{5}{2}-\sqrt{5} ga bo‘ling.