Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+7x-6=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-7±\sqrt{7^{2}-4\times 4\left(-6\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 7 ni b va -6 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\times 4\left(-6\right)}}{2\times 4}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49-16\left(-6\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{49+96}}{2\times 4}
-16 ni -6 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{145}}{2\times 4}
49 ni 96 ga qo'shish.
x=\frac{-7±\sqrt{145}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{\sqrt{145}-7}{8}
x=\frac{-7±\sqrt{145}}{8} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{145} ga qo'shish.
x=\frac{-\sqrt{145}-7}{8}
x=\frac{-7±\sqrt{145}}{8} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{145} ni ayirish.
x=\frac{\sqrt{145}-7}{8} x=\frac{-\sqrt{145}-7}{8}
Tenglama yechildi.
4x^{2}+7x-6=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
4x^{2}+7x-6-\left(-6\right)=-\left(-6\right)
6 ni tenglamaning ikkala tarafiga qo'shish.
4x^{2}+7x=-\left(-6\right)
O‘zidan -6 ayirilsa 0 qoladi.
4x^{2}+7x=6
0 dan -6 ni ayirish.
\frac{4x^{2}+7x}{4}=\frac{6}{4}
Ikki tarafini 4 ga bo‘ling.
x^{2}+\frac{7}{4}x=\frac{6}{4}
4 ga bo'lish 4 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{7}{4}x=\frac{3}{2}
\frac{6}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{7}{4}x+\left(\frac{7}{8}\right)^{2}=\frac{3}{2}+\left(\frac{7}{8}\right)^{2}
\frac{7}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{8} olish uchun. Keyin, \frac{7}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{3}{2}+\frac{49}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{8} kvadratini chiqarish.
x^{2}+\frac{7}{4}x+\frac{49}{64}=\frac{145}{64}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{49}{64} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{7}{8}\right)^{2}=\frac{145}{64}
x^{2}+\frac{7}{4}x+\frac{49}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{8}\right)^{2}}=\sqrt{\frac{145}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{8}=\frac{\sqrt{145}}{8} x+\frac{7}{8}=-\frac{\sqrt{145}}{8}
Qisqartirish.
x=\frac{\sqrt{145}-7}{8} x=\frac{-\sqrt{145}-7}{8}
Tenglamaning ikkala tarafidan \frac{7}{8} ni ayirish.