Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2x^{2}+4x+2-10x-8=0
2x^{2} ni olish uchun 4x^{2} va -2x^{2} ni birlashtirish.
2x^{2}-6x+2-8=0
-6x ni olish uchun 4x va -10x ni birlashtirish.
2x^{2}-6x-6=0
-6 olish uchun 2 dan 8 ni ayirish.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-6\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -6 ni b va -6 ni c bilan almashtiring.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-6\right)}}{2\times 2}
-6 kvadratini chiqarish.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(-6\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{36+48}}{2\times 2}
-8 ni -6 marotabaga ko'paytirish.
x=\frac{-\left(-6\right)±\sqrt{84}}{2\times 2}
36 ni 48 ga qo'shish.
x=\frac{-\left(-6\right)±2\sqrt{21}}{2\times 2}
84 ning kvadrat ildizini chiqarish.
x=\frac{6±2\sqrt{21}}{2\times 2}
-6 ning teskarisi 6 ga teng.
x=\frac{6±2\sqrt{21}}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{2\sqrt{21}+6}{4}
x=\frac{6±2\sqrt{21}}{4} tenglamasini yeching, bunda ± musbat. 6 ni 2\sqrt{21} ga qo'shish.
x=\frac{\sqrt{21}+3}{2}
6+2\sqrt{21} ni 4 ga bo'lish.
x=\frac{6-2\sqrt{21}}{4}
x=\frac{6±2\sqrt{21}}{4} tenglamasini yeching, bunda ± manfiy. 6 dan 2\sqrt{21} ni ayirish.
x=\frac{3-\sqrt{21}}{2}
6-2\sqrt{21} ni 4 ga bo'lish.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
Tenglama yechildi.
2x^{2}+4x+2-10x-8=0
2x^{2} ni olish uchun 4x^{2} va -2x^{2} ni birlashtirish.
2x^{2}-6x+2-8=0
-6x ni olish uchun 4x va -10x ni birlashtirish.
2x^{2}-6x-6=0
-6 olish uchun 2 dan 8 ni ayirish.
2x^{2}-6x=6
6 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{2x^{2}-6x}{2}=\frac{6}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{6}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}-3x=\frac{6}{2}
-6 ni 2 ga bo'lish.
x^{2}-3x=3
6 ni 2 ga bo'lish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=3+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=3+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=\frac{21}{4}
3 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=\frac{21}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{21}}{2} x-\frac{3}{2}=-\frac{\sqrt{21}}{2}
Qisqartirish.
x=\frac{\sqrt{21}+3}{2} x=\frac{3-\sqrt{21}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.