Baholash
3x^{2}+15x+1
Omil
3\left(x-\left(-\frac{\sqrt{213}}{6}-\frac{5}{2}\right)\right)\left(x-\left(\frac{\sqrt{213}}{6}-\frac{5}{2}\right)\right)
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x^{2}+20x+25-8x+3x-24
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}+12x+25+3x-24
12x ni olish uchun 20x va -8x ni birlashtirish.
3x^{2}+15x+25-24
15x ni olish uchun 12x va 3x ni birlashtirish.
3x^{2}+15x+1
1 olish uchun 25 dan 24 ni ayirish.
factor(3x^{2}+20x+25-8x+3x-24)
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
factor(3x^{2}+12x+25+3x-24)
12x ni olish uchun 20x va -8x ni birlashtirish.
factor(3x^{2}+15x+25-24)
15x ni olish uchun 12x va 3x ni birlashtirish.
factor(3x^{2}+15x+1)
1 olish uchun 25 dan 24 ni ayirish.
3x^{2}+15x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-15±\sqrt{15^{2}-4\times 3}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-15±\sqrt{225-4\times 3}}{2\times 3}
15 kvadratini chiqarish.
x=\frac{-15±\sqrt{225-12}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{213}}{2\times 3}
225 ni -12 ga qo'shish.
x=\frac{-15±\sqrt{213}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{213}-15}{6}
x=\frac{-15±\sqrt{213}}{6} tenglamasini yeching, bunda ± musbat. -15 ni \sqrt{213} ga qo'shish.
x=\frac{\sqrt{213}}{6}-\frac{5}{2}
-15+\sqrt{213} ni 6 ga bo'lish.
x=\frac{-\sqrt{213}-15}{6}
x=\frac{-15±\sqrt{213}}{6} tenglamasini yeching, bunda ± manfiy. -15 dan \sqrt{213} ni ayirish.
x=-\frac{\sqrt{213}}{6}-\frac{5}{2}
-15-\sqrt{213} ni 6 ga bo'lish.
3x^{2}+15x+1=3\left(x-\left(\frac{\sqrt{213}}{6}-\frac{5}{2}\right)\right)\left(x-\left(-\frac{\sqrt{213}}{6}-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{5}{2}+\frac{\sqrt{213}}{6} ga va x_{2} uchun -\frac{5}{2}-\frac{\sqrt{213}}{6} ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}