Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Omil
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

3x^{2}+20x+25-8x+3x-24
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
3x^{2}+12x+25+3x-24
12x ni olish uchun 20x va -8x ni birlashtirish.
3x^{2}+15x+25-24
15x ni olish uchun 12x va 3x ni birlashtirish.
3x^{2}+15x+1
1 olish uchun 25 dan 24 ni ayirish.
factor(3x^{2}+20x+25-8x+3x-24)
3x^{2} ni olish uchun 4x^{2} va -x^{2} ni birlashtirish.
factor(3x^{2}+12x+25+3x-24)
12x ni olish uchun 20x va -8x ni birlashtirish.
factor(3x^{2}+15x+25-24)
15x ni olish uchun 12x va 3x ni birlashtirish.
factor(3x^{2}+15x+1)
1 olish uchun 25 dan 24 ni ayirish.
3x^{2}+15x+1=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-15±\sqrt{15^{2}-4\times 3}}{2\times 3}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-15±\sqrt{225-4\times 3}}{2\times 3}
15 kvadratini chiqarish.
x=\frac{-15±\sqrt{225-12}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
x=\frac{-15±\sqrt{213}}{2\times 3}
225 ni -12 ga qo'shish.
x=\frac{-15±\sqrt{213}}{6}
2 ni 3 marotabaga ko'paytirish.
x=\frac{\sqrt{213}-15}{6}
x=\frac{-15±\sqrt{213}}{6} tenglamasini yeching, bunda ± musbat. -15 ni \sqrt{213} ga qo'shish.
x=\frac{\sqrt{213}}{6}-\frac{5}{2}
-15+\sqrt{213} ni 6 ga bo'lish.
x=\frac{-\sqrt{213}-15}{6}
x=\frac{-15±\sqrt{213}}{6} tenglamasini yeching, bunda ± manfiy. -15 dan \sqrt{213} ni ayirish.
x=-\frac{\sqrt{213}}{6}-\frac{5}{2}
-15-\sqrt{213} ni 6 ga bo'lish.
3x^{2}+15x+1=3\left(x-\left(\frac{\sqrt{213}}{6}-\frac{5}{2}\right)\right)\left(x-\left(-\frac{\sqrt{213}}{6}-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun -\frac{5}{2}+\frac{\sqrt{213}}{6} ga va x_{2} uchun -\frac{5}{2}-\frac{\sqrt{213}}{6} ga bo‘ling.