Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

12x^{2}+2x=0
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
x\left(12x+2\right)=0
x omili.
x=0 x=-\frac{1}{6}
Tenglamani yechish uchun x=0 va 12x+2=0 ni yeching.
12x^{2}+2x=0
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
x=\frac{-2±\sqrt{2^{2}}}{2\times 12}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 12 ni a, 2 ni b va 0 ni c bilan almashtiring.
x=\frac{-2±2}{2\times 12}
2^{2} ning kvadrat ildizini chiqarish.
x=\frac{-2±2}{24}
2 ni 12 marotabaga ko'paytirish.
x=\frac{0}{24}
x=\frac{-2±2}{24} tenglamasini yeching, bunda ± musbat. -2 ni 2 ga qo'shish.
x=0
0 ni 24 ga bo'lish.
x=-\frac{4}{24}
x=\frac{-2±2}{24} tenglamasini yeching, bunda ± manfiy. -2 dan 2 ni ayirish.
x=-\frac{1}{6}
\frac{-4}{24} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=0 x=-\frac{1}{6}
Tenglama yechildi.
12x^{2}+2x=0
Tenglamaning ikkala tarafini 3 ga ko'paytirish.
\frac{12x^{2}+2x}{12}=\frac{0}{12}
Ikki tarafini 12 ga bo‘ling.
x^{2}+\frac{2}{12}x=\frac{0}{12}
12 ga bo'lish 12 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{1}{6}x=\frac{0}{12}
\frac{2}{12} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}+\frac{1}{6}x=0
0 ni 12 ga bo'lish.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\left(\frac{1}{12}\right)^{2}
\frac{1}{6} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{1}{12} olish uchun. Keyin, \frac{1}{12} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{144}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{1}{12} kvadratini chiqarish.
\left(x+\frac{1}{12}\right)^{2}=\frac{1}{144}
x^{2}+\frac{1}{6}x+\frac{1}{144} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{1}{144}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{1}{12}=\frac{1}{12} x+\frac{1}{12}=-\frac{1}{12}
Qisqartirish.
x=0 x=-\frac{1}{6}
Tenglamaning ikkala tarafidan \frac{1}{12} ni ayirish.