a uchun yechish
a = \frac{9}{4} = 2\frac{1}{4} = 2,25
Baham ko'rish
Klipbordga nusxa olish
\left(4\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
4^{2}\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
\left(4\sqrt{a}\right)^{2} ni kengaytirish.
16\left(\sqrt{a}\right)^{2}=\left(\sqrt{4a+27}\right)^{2}
2 daraja ko‘rsatkichini 4 ga hisoblang va 16 ni qiymatni oling.
16a=\left(\sqrt{4a+27}\right)^{2}
2 daraja ko‘rsatkichini \sqrt{a} ga hisoblang va a ni qiymatni oling.
16a=4a+27
2 daraja ko‘rsatkichini \sqrt{4a+27} ga hisoblang va 4a+27 ni qiymatni oling.
16a-4a=27
Ikkala tarafdan 4a ni ayirish.
12a=27
12a ni olish uchun 16a va -4a ni birlashtirish.
a=\frac{27}{12}
Ikki tarafini 12 ga bo‘ling.
a=\frac{9}{4}
\frac{27}{12} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
4\sqrt{\frac{9}{4}}=\sqrt{4\times \frac{9}{4}+27}
4\sqrt{a}=\sqrt{4a+27} tenglamasida a uchun \frac{9}{4} ni almashtiring.
6=6
Qisqartirish. a=\frac{9}{4} tenglamani qoniqtiradi.
a=\frac{9}{4}
4\sqrt{a}=\sqrt{4a+27} tenglamasi noyob yechimga ega.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}