Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-x^{2}\pi =95-4\pi
Ikkala tarafdan 4\pi ni ayirish.
x^{2}=\frac{95-4\pi }{-\pi }
-\pi ga bo'lish -\pi ga ko'paytirishni bekor qiladi.
x^{2}=-\frac{95}{\pi }+4
95-4\pi ni -\pi ga bo'lish.
x=\frac{i\sqrt{95-4\pi }}{\sqrt{\pi }} x=-\frac{i\sqrt{95-4\pi }}{\sqrt{\pi }}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
4\pi -x^{2}\pi -95=0
Ikkala tarafdan 95 ni ayirish.
-\pi x^{2}+4\pi -95=0
Shartlarni qayta saralash.
\left(-\pi \right)x^{2}+4\pi -95=0
Bu kabi kvadrat tenglamalarni x^{2} sharti bilan, biroq x shartisiz hamon kvadrat tenglamasidan foydalanib yechish mumkin, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ular standart formulaga solingandan so'ng: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\pi \right)\left(4\pi -95\right)}}{2\left(-\pi \right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\pi ni a, 0 ni b va 4\pi -95 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\left(-\pi \right)\left(4\pi -95\right)}}{2\left(-\pi \right)}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{4\pi \left(4\pi -95\right)}}{2\left(-\pi \right)}
-4 ni -\pi marotabaga ko'paytirish.
x=\frac{0±2i\sqrt{\pi \left(95-4\pi \right)}}{2\left(-\pi \right)}
4\pi \left(4\pi -95\right) ning kvadrat ildizini chiqarish.
x=\frac{0±2i\sqrt{\pi \left(95-4\pi \right)}}{-2\pi }
2 ni -\pi marotabaga ko'paytirish.
x=-\frac{i\sqrt{95-4\pi }}{\sqrt{\pi }}
x=\frac{0±2i\sqrt{\pi \left(95-4\pi \right)}}{-2\pi } tenglamasini yeching, bunda ± musbat.
x=\frac{i\sqrt{95-4\pi }}{\sqrt{\pi }}
x=\frac{0±2i\sqrt{\pi \left(95-4\pi \right)}}{-2\pi } tenglamasini yeching, bunda ± manfiy.
x=-\frac{i\sqrt{95-4\pi }}{\sqrt{\pi }} x=\frac{i\sqrt{95-4\pi }}{\sqrt{\pi }}
Tenglama yechildi.