4 \frac{ 2 }{ 5 } -40 \% - \frac{ 2 }{ 3 } -2=
Baholash
\frac{4}{3}\approx 1,333333333
Omil
\frac{2 ^ {2}}{3} = 1\frac{1}{3} = 1,3333333333333333
Baham ko'rish
Klipbordga nusxa olish
\frac{20+2}{5}-\frac{40}{100}-\frac{2}{3}-2
20 hosil qilish uchun 4 va 5 ni ko'paytirish.
\frac{22}{5}-\frac{40}{100}-\frac{2}{3}-2
22 olish uchun 20 va 2'ni qo'shing.
\frac{22}{5}-\frac{2}{5}-\frac{2}{3}-2
\frac{40}{100} ulushini 20 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{22-2}{5}-\frac{2}{3}-2
\frac{22}{5} va \frac{2}{5} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{20}{5}-\frac{2}{3}-2
20 olish uchun 22 dan 2 ni ayirish.
4-\frac{2}{3}-2
4 ni olish uchun 20 ni 5 ga bo‘ling.
\frac{12}{3}-\frac{2}{3}-2
4 ni \frac{12}{3} kasrga o‘giring.
\frac{12-2}{3}-2
\frac{12}{3} va \frac{2}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{10}{3}-2
10 olish uchun 12 dan 2 ni ayirish.
\frac{10}{3}-\frac{6}{3}
2 ni \frac{6}{3} kasrga o‘giring.
\frac{10-6}{3}
\frac{10}{3} va \frac{6}{3} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{4}{3}
4 olish uchun 10 dan 6 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}