x uchun yechish
x = \frac{61}{17} = 3\frac{10}{17} \approx 3,588235294
Grafik
Baham ko'rish
Klipbordga nusxa olish
4\left(9-5x+10\right)+3\left(3x-5\right)=2\left(3\left(x-5\right)+17\right)-4
-5 ga x-2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4\left(19-5x\right)+3\left(3x-5\right)=2\left(3\left(x-5\right)+17\right)-4
19 olish uchun 9 va 10'ni qo'shing.
76-20x+3\left(3x-5\right)=2\left(3\left(x-5\right)+17\right)-4
4 ga 19-5x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
76-20x+9x-15=2\left(3\left(x-5\right)+17\right)-4
3 ga 3x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
76-11x-15=2\left(3\left(x-5\right)+17\right)-4
-11x ni olish uchun -20x va 9x ni birlashtirish.
61-11x=2\left(3\left(x-5\right)+17\right)-4
61 olish uchun 76 dan 15 ni ayirish.
61-11x=2\left(3x-15+17\right)-4
3 ga x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
61-11x=2\left(3x+2\right)-4
2 olish uchun -15 va 17'ni qo'shing.
61-11x=6x+4-4
2 ga 3x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
61-11x=6x
0 olish uchun 4 dan 4 ni ayirish.
61-11x-6x=0
Ikkala tarafdan 6x ni ayirish.
61-17x=0
-17x ni olish uchun -11x va -6x ni birlashtirish.
-17x=-61
Ikkala tarafdan 61 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x=\frac{-61}{-17}
Ikki tarafini -17 ga bo‘ling.
x=\frac{61}{17}
Ikkala surat va maxrajdan manfiy belgini olib tashlash bilan \frac{-61}{-17} kasrini \frac{61}{17} ga soddalashtirish mumkin.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}